Medical Vacuum Plant
HTM 02-01 • 450 mmHg • 60 Hz

Description
Medical Vacuum Plants are intended to provide a continuous supply of medical vacuum to a pipeline system in healthcare facilities. The system shall be 'duplexed' such that the supply is maintained in single fault condition. Two standby pumps shall be provided, such that the specified volumetric flow rate is achieved with two reserve pumps on standby. Horizontal Medical Vacuum Plants shall be supplied pre-piped, fully tested and comply with the United Kingdom Department of Health (DoH) publication HTM 02-01, BS EN ISO 7396-1 and NHS Model Engineering Specification C11.

The Medical Vacuum Plant shall be fully tested. A test certificate shall be provided showing the results of the tests, including the free-air flow rate obtained at an inlet vacuum of 450 mmHg. Type testing of plant flows or testing in component form is not acceptable.

Pneumatech Medical Vacuum Plants are CE marked to the Medical Device Directive 93/42/EEC under the auspices of notified body no.0088 (Lloyd’s). Under this directive, Medical Vacuum Plant is classified as Class IIb Medical Devices.

Vacuum Pumps
Vacuum pumps shall be air-cooled; oil lubricated rotary vane type suitable for both continuous and frequent start/stop operation at nominal inlet vacuum levels of between 475 mmHg and 650 mmHg. Rotors shall be driven by directly coupled totally enclosed fan-cooled electric motors. Pump inlets shall include a wire mesh filter and integral non-return valve to prevent oil suck back and pressure increases in the vacuum system. Each vacuum pump shall be provided with an oil mist eliminator delivering a virtually oil-free exhaust. Each pump shall be fitted with anti-vibration pads between the pump foot and mounting frame and an oil level sight glass. A pressure switch shall be included to provide an indication that the pump is operating normally once it has been called into service.

Pump Starter Units
The central control unit shall incorporate a user friendly colour display with clear pictograms and LED indicators, providing easy access to system operational information.

Bacteria Filters
A duplex arrangement of bacteria filters shall be provided, incorporating high efficiency filter elements. Each filter shall be generously sized to carry the full plant design flow capacity with a pressure drop not exceeding 22 mbar (16.5 mmHg). Bacteria Filter elements shall have penetration levels not exceeding 0.005% when tested by the sodium flame method in accordance with BS 3928:1969 utilising particles in the 0.02 to 2 micron size range. Each filter shall be provided with a differential pressure gauge. A drain flask shall be connected to each filter. Drain flasks shall be manufactured from transparent Pyrex® with a polymer coating on the inner and outer surfaces in order to maintain a seal in the event of inadvertent breakage of the Pyrex® flask. All drain flasks shall be suitable for sterilisation and be connected via a manual isolating valve.
Central Control System
The central control system shall provide an intelligent human machine interface incorporating on board flash memory and real-time clock for recording operational parameters in the in-built event log. The central control system shall operate at low voltage and include BMS connection for common fault. Visualisation of plant inputs, outputs and status through a web browser, using a simple Ethernet connection shall be available. The central control unit shall incorporate a user friendly 5.7” high-definition colour display with clear pictograms and LED indicators, providing easy access to system operational information.

Cascading of vacuum pumps shall be achieved by measuring the vacuum level at the plant inlet with a pressure transducer. A mechanical back-up facility shall ensure continued operation in the event of a control system malfunction. The control system shall normally employ automatic rotation of the lead pump to maximise pump life and ensure even wear.

Vacuum Vessel(s)
Vacuum vessels shall comply with BS EN 286-1: +A2 2005 and be manufactured from heavy gauge fusion welded steel with a minimum wall thickness of 5 mm and dished ends with a minimum wall thickness of 6 mm. Total vacuum vessel volume shall be at least 100% of the plant capacity in 1 minute in terms of free air aspired at normal working pressure. Where only a single vessel is supplied it shall be connected to the bacteria filters in parallel with the pumps such that operation of the system can continue during receiver isolation for periodic internal inspection. The vessel shall include a drain valve and a 100 mm nominal diameter vacuum gauge complete with isolating valve.

Note:-
For plant above 500L/m all inter connecting pipework between components to be made on site and provided by the installer.

All control and starter cubicles will be supplied with connecting wire harnesses of 5m in length to suit standard configurations.
HTM 02-01 Medical Vacuum Plant Specifications

Systems for 400V 3 phase 60 Hz Electrical Supply - Oil-Lubricated Rotary Vane Pumps

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Model Ref.</th>
<th>Free Air Aspirated (l/min) @ -450 mmHg (1)</th>
<th>Nominal Motor Power per Pump (kW)</th>
<th>Electrical Supply</th>
<th>Starting Method</th>
<th>Full Load Current per Pump (A)</th>
<th>Approx. Starting Current (A)</th>
<th>Motor-Point Supply Current per Pump (A)</th>
<th>Pump Configuration</th>
<th>Duty Pumps</th>
<th>Sound Pressure Level Pump (dB(A))</th>
<th>Cooling Air Flow per Pump (m³/h)</th>
<th>Pump Oil Capacity (litres)</th>
<th>Vacuum Vessel(s) (litres)</th>
<th>Vessel Volume (litres)</th>
<th>Vessel Orientation</th>
<th>Layout Drawing³</th>
</tr>
</thead>
<tbody>
<tr>
<td>8102341100</td>
<td>CV100T</td>
<td>100</td>
<td>0.55</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>1.55</td>
<td>9</td>
<td>6</td>
<td>Triplex</td>
<td>1</td>
<td>64</td>
<td>0.07</td>
<td>0.3</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>Horizontal</td>
</tr>
<tr>
<td>8102341101</td>
<td>CV300T</td>
<td>300</td>
<td>1.5</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>3.6</td>
<td>22</td>
<td>10</td>
<td>Triplex</td>
<td>1</td>
<td>66</td>
<td>0.18</td>
<td>1.0</td>
<td>1</td>
<td>300</td>
<td>300</td>
<td>Horizontal</td>
</tr>
<tr>
<td>8102341102</td>
<td>CV410T</td>
<td>410</td>
<td>2.4</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>4.9</td>
<td>29</td>
<td>16</td>
<td>Triplex</td>
<td>1</td>
<td>66</td>
<td>0.26</td>
<td>1.0</td>
<td>1</td>
<td>500</td>
<td>500</td>
<td>Horizontal</td>
</tr>
<tr>
<td>8102341103</td>
<td>CV640T</td>
<td>640</td>
<td>3.5</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>6.7</td>
<td>40</td>
<td>20</td>
<td>Triplex</td>
<td>1</td>
<td>68</td>
<td>0.36</td>
<td>2.0</td>
<td>1</td>
<td>750</td>
<td>750</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341104</td>
<td>CV1140T</td>
<td>1140</td>
<td>6.6</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>11.9</td>
<td>71</td>
<td>20M25</td>
<td>Triplex</td>
<td>1</td>
<td>72</td>
<td>0.7</td>
<td>5.0</td>
<td>1</td>
<td>1300</td>
<td>1300</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341105</td>
<td>CV1280T</td>
<td>1280</td>
<td>6.6</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>14.2</td>
<td>85</td>
<td>20M32</td>
<td>Triplex</td>
<td>1</td>
<td>74</td>
<td>0.7</td>
<td>5.0</td>
<td>1</td>
<td>1300</td>
<td>1300</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341106</td>
<td>CV1630T</td>
<td>1630</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.4</td>
<td>92</td>
<td>32M40</td>
<td>Triplex</td>
<td>1</td>
<td>74</td>
<td>0.9</td>
<td>6.5</td>
<td>1</td>
<td>1900</td>
<td>1900</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341107</td>
<td>CV1900T</td>
<td>1900</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.5</td>
<td>93</td>
<td>32M40</td>
<td>Triplex</td>
<td>1</td>
<td>76</td>
<td>0.9</td>
<td>6.5</td>
<td>1</td>
<td>1900</td>
<td>1900</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341108</td>
<td>CV2280Q</td>
<td>2280</td>
<td>6.6</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>11.9</td>
<td>71</td>
<td>20M25</td>
<td>Quadruplex</td>
<td>2</td>
<td>72</td>
<td>0.66</td>
<td>5.0</td>
<td>2</td>
<td>1500</td>
<td>3000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341109</td>
<td>CV2560Q</td>
<td>2560</td>
<td>6.6</td>
<td>380 V 3~ 60 Hz</td>
<td>DOL</td>
<td>14.2</td>
<td>85</td>
<td>20M32</td>
<td>Quadruplex</td>
<td>2</td>
<td>74</td>
<td>0.66</td>
<td>5.0</td>
<td>2</td>
<td>1500</td>
<td>3000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341110</td>
<td>CV3270Q</td>
<td>3270</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.4</td>
<td>92</td>
<td>32M40</td>
<td>Quadruplex</td>
<td>2</td>
<td>74</td>
<td>0.9</td>
<td>6.5</td>
<td>2</td>
<td>2000</td>
<td>4000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341111</td>
<td>CV3890Q</td>
<td>3890</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.5</td>
<td>93</td>
<td>32M40</td>
<td>Quadruplex</td>
<td>2</td>
<td>76</td>
<td>0.9</td>
<td>6.5</td>
<td>2</td>
<td>2000</td>
<td>4000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341112</td>
<td>CV5640Q</td>
<td>5640</td>
<td>15</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>25.1</td>
<td>151</td>
<td>40</td>
<td>Quadruplex</td>
<td>2</td>
<td>79</td>
<td>1.8</td>
<td>12.0</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341113</td>
<td>CV4910P</td>
<td>4910</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.4</td>
<td>92</td>
<td>32M40</td>
<td>Pentaplex</td>
<td>3</td>
<td>74</td>
<td>0.9</td>
<td>6.5</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341114</td>
<td>CV5840P</td>
<td>5840</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.5</td>
<td>93</td>
<td>32M40</td>
<td>Pentaplex</td>
<td>3</td>
<td>76</td>
<td>0.9</td>
<td>6.5</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341115</td>
<td>CV8460P</td>
<td>8460</td>
<td>15</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>25.1</td>
<td>151</td>
<td>40</td>
<td>Pentaplex</td>
<td>3</td>
<td>79</td>
<td>1.8</td>
<td>12.0</td>
<td>3</td>
<td>3000</td>
<td>9000</td>
<td>Vertical</td>
</tr>
<tr>
<td>8102341116</td>
<td>CV7780S</td>
<td>7780</td>
<td>9.2</td>
<td>380 V 3~ 60 Hz</td>
<td>SD</td>
<td>15.4</td>
<td>92</td>
<td>32M40</td>
<td>Sextaplex</td>
<td>4</td>
<td>76</td>
<td>0.9</td>
<td>6.5</td>
<td>3</td>
<td>3000</td>
<td>9000</td>
<td>Vertical</td>
</tr>
</tbody>
</table>

1) Data measured and stated in accordance with Pneupop 6602 with one pump on standby and with an air intake at 1013 mbar, 20°C. Flow rates stated are subject to a tolerance of +/- 10%.
2) These are typical figures and may vary with the specific motor used. Consult the motor nameplate for exact figures.
3) Measured in free field conditions at a distance of 1m in accordance with ISO 21510:2005. Subject to a tolerance of +/- 3 dB
4) Dimensions do not include the recommended 500 mm clearance for access and servicing.
5) Other models and layouts are available to suit particular site requirements. Contact your local representative for support.

© Pneumatech Medical Gas Solutions 2016
E-Mail: sales@p-mgs.com • www.p-mgs.com
The right is reserved to change this technical specification without prior notice