

Design Guidelines for High Purity Gas Delivery Systems

0

INTRODUCTION

A high purity gas delivery system that is over-designed requires state-of-the-art components, meticulous installation and always ends up to be costly. On the other end, selecting inadequate components and using un-experienced installers are sure ways to contaminate the gas stream. Therefore, a good gas delivery system is about installing the right equipment adequately while making sure all safety aspects are covered. It is easier said than done.

Gases are chemicals with different properties and their inherent safe handling requirements. High purity gas delivery system design is also a matter of dealing with impurities that acceptable for a given application. Then comes the financial aspect of the project.

We are all busy and we understand the need to go straight to the point. That's why we are using a lot of images, graphics, schematics and tables in this design guide. This Pipeliner is intended to be used by plumbing engineers, piping installers and users of high purity gases. It is a unique design guide book in a way that it covers pretty much all topics a high purity gas delivery system design without going too deep in each topic. Consider this document to be a tool to quickly understand the vast worlds of high purity piping, analytical equipment and compressed gases.

The best way to fully understand the content of the design guide is to attend one of the seminar about the Pipeliner. On top of going through this design guide, the experienced instructor provides real-life examples and explanations that are easy to understand.

The Pipeliner is a compendium of the knowledge, experience, technical expertise and education of scientists, piping installers, engineers and sales people. We all hope you will find this document useful and relevant.

Thank You!

Denis Hache

Global Product Marketing Manager Laboratory and Non-Medical Applications BeaconMedaes

BeaconMedaes -The Pipeliner

103

102 **NO**

F¹⁰

80 B **S**

S C S

⁹⁷

S C S

⁹⁵ Am

Pu Du

Np⁹³

C 32

⁹

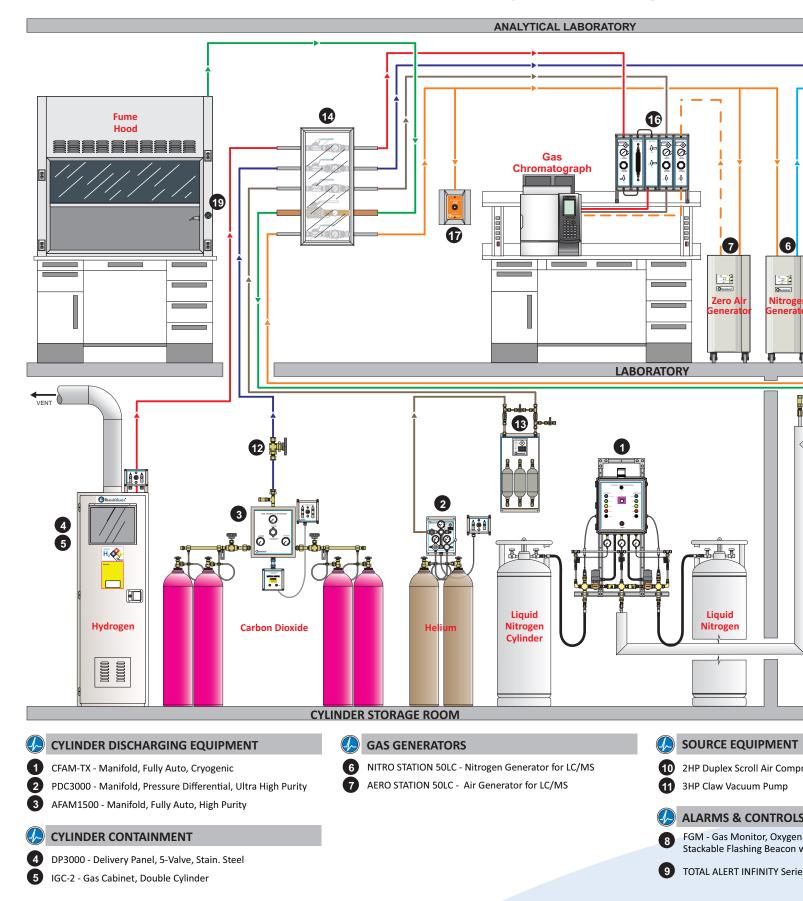
⁶ H

₿ B C B C

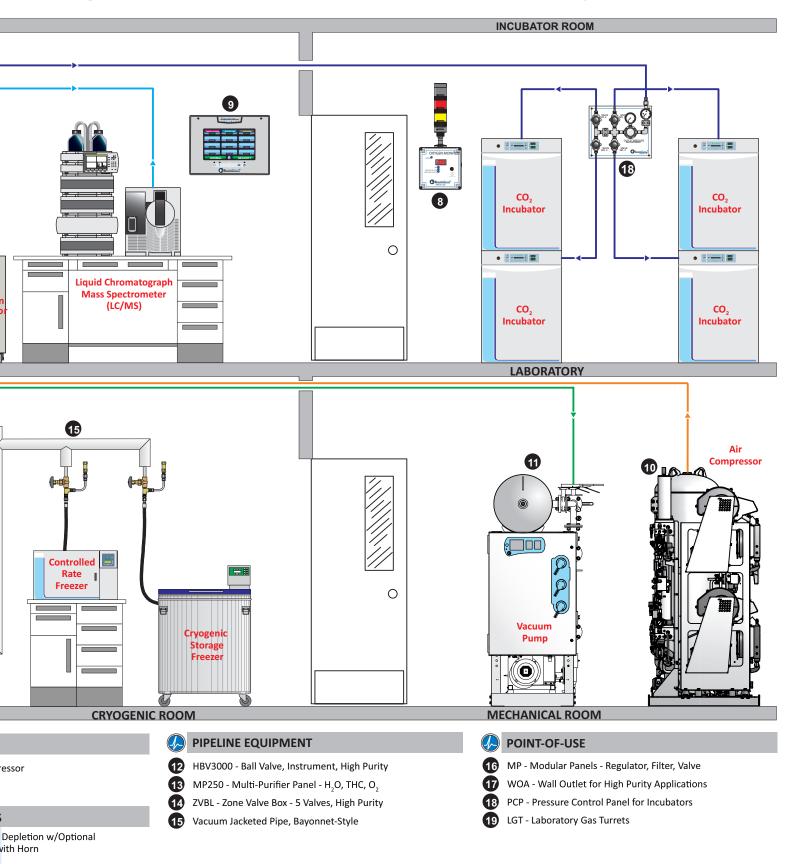
Periodic Table Of Elements Natural Form

² He	10 Ne	Ar	36 Kr	54 Xe	88 Ra		Lu
	െ 🖳	C ¹⁷	35 Br	- 23	⁸⁵ At		q
	∞ 0	16 S	³⁴ Se	52 Te	⁸⁴ PO		T ³⁰
	∠ N	15 P	33 AS	51 Sb	8 8 8		80 L
	ں ۵	14 Si	32 Ge	50 Sn	⁸² Pb		67 Ho
	Ω α	13 AI	31 Ga	49 In	81 TI		Dy Dy
			30 Zn	Cd 48	[∞] B		65 Tb
			²⁹ Cu	⁴⁷ Ag	79 Au		64 Gd
			28 NI	46 Pd	₽t		⁶³ Eu
	°		271 Co	45 Rh	- <u>-</u>		⁶² Sm
	0		26 Fe	44 Ru	76 OS		Pm ⁶¹
	<mark>Liquid</mark>		²⁵ Mn	43 TC	75 Re		og B N
	°		24 Cr	42 Mo	74		59 7
	Solid		23	4 ⁴ Nb	73 Ta		Ce 38
			22 TI	40 Zr	72 Hf		57 La
			²¹ Sc	39	57-71	89-103	
	⁴ Be	12 Mg	²⁰ Ca	°ss Sr	56 Ba	⁸⁸ Ra	
⊤ 	3 Li	nt Na	19 X	37 Rb	55 CS	87 Fr	

Source http//chemistry.about.com © 2010 Todd Helmenstine About Chemistry

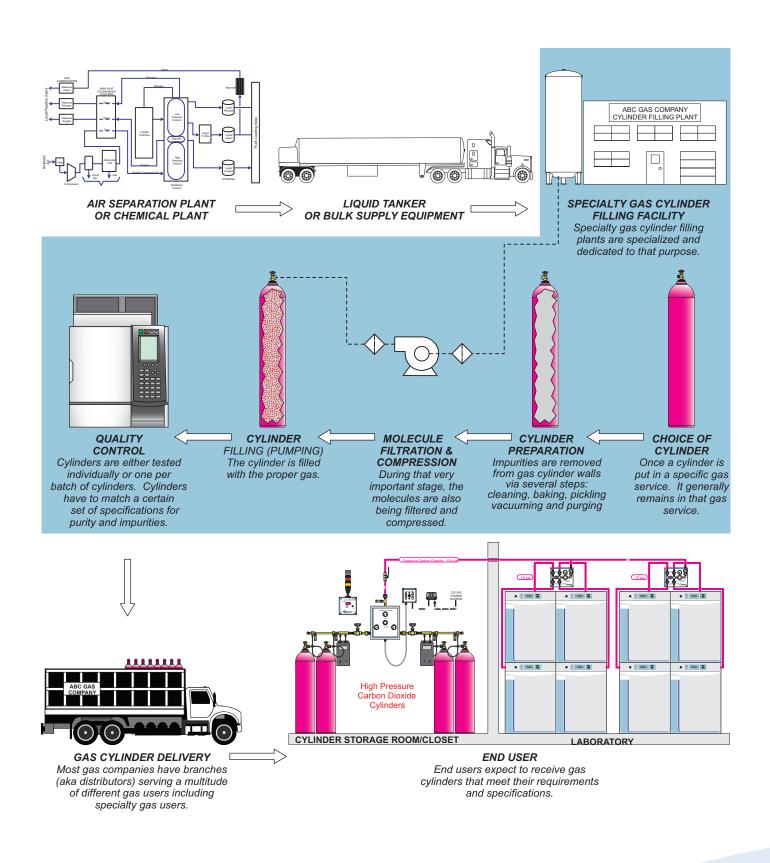

2

BeaconMedaes -The Pipeliner


Table Of Contents

- **2** Periodic Table of the Elements
- 4-5 The Ideal Lab
- **6** The Specialty Gas Cylinder Journey
- 7 Common Cylinder Size Comparison Between Manufacturers + Typical Cylinder Contents
- 8 Topical Analytical Equipment Using Gases
- 9 Impurities What are They? Where Do They Come From?
- **10** Impurities Impact on Analytical Results
- **11-12** Quick Reference Application Guide
- **13** Table of Gas Properties and Material Compatibilities
- 14 NFPA 704 (HMIS) Hazardous Materials Identification System
- 15 Gas Data Sheet Example Ammonia
- **16** Design & Construction Cycle Who's Involved?
- **17** Pipeline Design Criteria
- **18-19** Pipeline Design Key Steps
- **20** Questionnaire Point of Use Requirements
- 21 Total Gas Requirements Spreadsheet
- 22 Gas Supply Modes Cryogenics
- 23 Gas Supply Modes On-Site Generation
- **24** Gas Supply Modes High Pressure Containers
- 25 Codes, Standards and Regulations
- **26** General Safety Requirements as per the Toxic Gas Ordinance (TGO)
- **27** Gas Cabinets Minimum Requirements as per NFPA 55
- **28-29** Purity Levels & Choice of Materials
- **30** Important Design Considerations Related to Gas Piping Installations
- **31** Tubing/Piping Electropolishing
- **32** Why Packless Diaphragm Valves Are So Much Better?
- **33** Carbon Dioxide & Regulator Freeze Up
- 34 Manifold Selection Questionnaire
- **35** Calculations Quantity of Cylinders Per Manifolds?
- **36** Gas Cylinder Storage Design Guidelines
- **37** Gas Cylinder Storage Maximum Allowable Quantity
- **38** Gas Monitoring 101
- **39** Control Scheme, Remote Actuation & Annunciation
- 40 Calculations Pressure Rating for Tubing & Piping
- 41 Pressure Rating Copper Pipes & Tubes
- 42 Pressure Rating Stainless Steel Tubes
- 43 Pressure Rating Stainless Steel Pipes
- **44-45** Calculations Flow Capacity for Tubing
- **46-48** Calculations Assessment of Ventilation Requirements for Oxygen Depletion

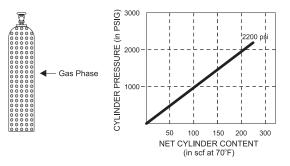
Ideal Solutions: From Design To Completion To S



Start-Up • From Gas Source To The Point-Of-Use

s - Master Alarm Box

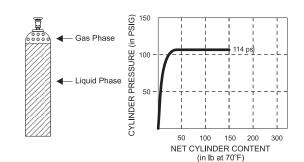
The Specialty Gas Cylinder Journey


Common Cylinder Size Comparison Between Gas Manufacturers

Approx. Dimensions (inches)	Air Products	AGA	Airgas	вос	Air Liquide	Praxair	Matheson	MG	Linde	Scott Specialty Gases
High Pressure St	eel Cylinders									
24 x 90	Y	-	-	-	-	то	-	-	-	-
9 x 55	А	049	300	300	49	т	1L	300	049	К
9 x 51	В	044	200	200	44	К	1A	200	044	A
7 x 33	С	016	80	80	16	Q	2	80	016	В
7 x 19	D-1	007	35	30	7	G	3	35	007	С
4 x 17	D	003	7	12	3	F	4	10	-	D
2 x 12	L.B.	LBR	L.B.	L.B.	L.B.	L.B.	L.B.	L.B.	LBS/LBR	L.B.
4 x 26	E	005	E	E	MEDE	ANE	3L	E	-	ER
10 x 51	BX	485	3HP	500	44H	6K	1U	3HP	046	-
9 x 51	BY	-	-	-	44H	ЗK	1H	2HP	-	-
High Pressure A	luminum Cylind	ders								
10 x 52	A (Al)	-	-	-	AT	-	-		-	-
8 x 48	B (AI)	A31	150A	150A	30AL	AS	1R	150AL	A31	AL
7 x 33	C (AI)	A16	80A	80A	22AL	AQ	2R	80AL	A16	BL
7 x 16	D-1 (AI)	A07	33A	30A	7AL	AG	3R	33AL	A07	CL

Typical Cylinder Content

Gas Phase Only Cylinders


Gases with extremely low boiling temperatures have a gas phase only in high pressure cylinders. The main characteristic of this type of gas cylinder is the direct correlation between the net content and its pressure. In other words, the cylinder pressure decreases as the content depletes. Most of these gases can be found in gas form in nature.

Molecule	Cylinder	Content	Cylinder	Pressure					
	ft³	m³	psig	barg					
High Pressure Steel Cylinders (K- size, 44-size, 200-size)									
Air	227	6.31	2200	151.7					
Argon	243	6.77	2200	151.7					
Carbon Monoxide	173	4.79	1650	113.8					
Helium	214	5.93	2200	151.7					
Hydrogen	192	5.32	2000	137.9					
Methane	256	7.09	2000	137.9					
Nitrogen	224	6.20	2200	151.7					
Oxygen	244	6.76	2200	151.7					

Gas & Liquid Phases Cylinders

Gases with high boiling temperatures have both a gas phase and a liquid phase in the cylinders. The cylinder pressure decreases mainly when the liquid phase inside the cylinder is depleted. Those gases are called process gases as they are the results of industrial processes such as refineries.

Molecule	Cylinder	Content	Cylinder Pressure							
	lbs	kg	psig	barg						
High Pressure Steel Cylinders (K- size, 44-size, 200-size)										
1, 3-Butadiene	45	20.41	21.4	1.5						
Carbon Dioxide	57	25.85	830	57.2						
Ethylene	30	13.60	1250	4.79						
Hydrogen Chloride	55	24.95	613	86.2						
Nitrous Oxide	60	27.22	745	51.4						
Propane	25	15.88	109	7.5						
Propylene	100	45.36	136	9.4						
Sulfur Hexafluoride	115	52.16	320	22.2						

Typical Analytical Equipment Using Gases

Gas Chromatography (GC)

Used by permission from Thermo Fisher Scientific, the copyright owner

Thermo Scientific[™] TRACE[™] 1310 GC Analyzers

Typical Gas Used Helium Hydrogen Air Nitrogen

Definitions & Applications Separation of individual species in a sample is taking place in a column using a mobile gas phase and a stationary solid phase.

Inductively Coupled Plasma (ICP)

Used by permission from Thermo Fisher Scientific, the copyright owner

Thermo Scientific[™] iCAP[™] 7600 ICP-OES

Argon Nitrogen

Typical Gas Used Definitions & Applications

Spectroscopy trace analysis of chemical elements. Popular technique used to detect the presence of metals in different types of samples.

Liquid Chromatography (HPLC, LCMS)

Used by permission from Thermo Fisher Scientific, the copyright owner

Thermo Scientific™ UltiMate™ 3000 Standard HPLC System

Typical Gas Used

Air Nitrogen **Definitions & Applications** Separation of individual species in a sample is taking place in a column using a mobile liquid phase and a stationary solid phase.

Atomic Absorption (AA)

Used by permission from Thermo Fisher Scientific, the copyright owner

Thermo Scientific™ iCE™ 3300 AA Spectrometer

Acetylene Nitrous Oxide

Typical Gas Used Definitions & Applications

Spectroscopy analysis of chemical elements. Popular technique used to detect the presence of metals in given samples.

Incubators

Used by permission from Caron Products, the copyright owner

Typical Gas Used Carbon Dioxide Oxygen Nitrogen Gas Mixture

Definitions & Applications

An incubator is a device used to grow and maintain microbiological cultures or cell cultures. Incubators maintains optimal conditions (humidity, temperature, CO₂ and Oxygen) for the cultures to grow.

Spectrometry

Used by permission from Thermo Fisher Scientific, the copyright owner

Thermo Scientific[™] Nicolet iS50 FTIR Spectrometers

Typical Gas Used **Definitions & Applications**

AA, FT-IR and RMN.

Air Nitrogen

Spectroscopy is the study of the interaction between matter and electromagnetic radiation (such as light). Different families of spectrometers are ICP, ICP-MS,

8

Impurities - What Are They? Where Do They Come From?

The Importance of Maintaining Gas Purity

Below is a list of common detectors used in gas chromatography. The impurities/contaminants (called enemies) and their impacts on the analytical equipment performance.

DISCHARGE IONIZATION DETECTOR (DID)

Enemies: Trace levels of oxygen, moisture and hydrocarbons *Impact:* Reduce detector response and affect baseline stability

ELECTRON CAPTURE DETECTOR (ECD)

Enemies: Moisture, oxygen and trace of halocarbons *Impact:* Reduce detector response, cause baseline shift and create negative peaks

FLAME IONIZATION DETECTOR (FID)

Enemies: Hydrocarbons, oxygen, moisture *Impact:* Decrease detector sensitivity and damage chromatographic columns

FOURIER TRANSFORM INFRARED DETECTOR (FTIR)

Enemies: Impurities absorbing in the same waveband of species, moisture and oxygen *Impact:* Inaccurate response and interfere with infrared spectroscopy

HELIUM IONIZATION DETECTOR (HID)

Enemies: Trace of hydrocarbons, oxygen and moisture *Impact:* Affect detector stability

MASS SPECTROSCOPY DETECTOR (MSD)

Enemies: Traces of impurities with equivalent mass of the species

Impact: Inaccurate response

PULSE DISCHARGE ELECTRON CAPTURE DETECTOR (PDECD)

Enemies: Moisture, oxygen and trace of halocarbons *Impact:* Reduce detector response, cause baseline shift and create negative peaks

PULSE DISCHARGE HELIUM IONIZATION DETECTOR

Enemies: Trace levels of oxygen, moisture and hydrocarbons *Impact:* Reduce detector response and affect baseline stability

PULSE DISCHARGE PHOTO IONIZATION DETECTOR

Enemies: Trace levels of oxygen, moisture and hydrocarbons. Oxidizer and contaminants in fuel gas *Impact:* Reduce detector response and affect baseline stability. Interfere with detector response

THERMAL CONDUCTIVITY DETECTOR (TCD)

Enemies: Trace levels of oxygen and hydrocarbons *Impact:* Reduce detector sensitivity and corrode filament of detector

The Multiple Sources of Impurities in a Gas Distribution System

We have just seen that hydrocarbons, moisture, oxygen and halocarbons (to a lesser extent) are the main gas stream contaminants. These contaminants can find their way into the piping system in many ways. The list below is certainly not exhaustive.

GAS CYLINDERS

Unless the purity (aka grade) of the gas selected is inadequate for the intended purpose - like using industrial grade helium for a GC-MS, it is very unlikely that the source of contaminants is the gas cylinders. Gas companies are analyzing gas purity either in cylinder batches or individually. But, because mistakes can happen, contaminants have been found in gas cylinders.

PIPELINE INSTALLER

Pipeline installers are not all made equal. While several installers have competent and experienced personnel, the lack of knowledge of the not so fortunate installers can lead to fairly disastrous installs (even with the best intentions in mind). The sources of contamination by a poor pipeline installation are countless: leaky joints, oily tools and hands, bad purges (if any), poor inerting (if any) while brazing/welding , wrong materials installed, etc...

PIPING AND TUBING

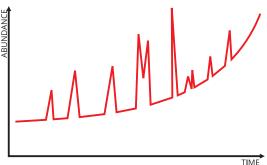
It is better to have a clean medical grade copper pipe than a dirty stainless steel pipe. Nowadays, several stainless steel tubes and pipes are imported from overseas in ship containers. Humidity is gradually building up causing accumulation of lime for dust to stick better inside the tubes and pipes. Wholesalers are often keeping those tubes/pipes on their big pipe racks uncapped and therefore open to atmosphere where dust and debris gradually build up.

GAS EQUIPMENT

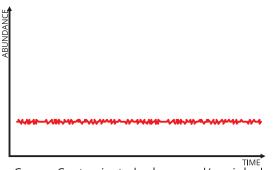
The poor selection of gas equipment can lead to serious gas contamination. Off gassing of rubber materials such as Neoprene diaphragm regulators will inevitably be visible to most detectors. That's why it is not recommended to use regulators designed for welding or for medical applications in high purity applications. Airborne contaminants (moisture, oxygen and carbon dioxide) find their way into gas streams from several locations; valves with packing (ball valves and needle valves) and forged body regulators, to name a few. Even good three-piece medical ball valves are not suitable for high purity applications. Although the cost could be prohibitive, the best type of valve is definitely the packless diaphragm valve. A good quality instrumentation needle valve or ball valve (Swagelok type) will greatly limit the damages compared to medical ball valves for example, should a ball valves or needle valves be needed for high purity applications,.

END USER

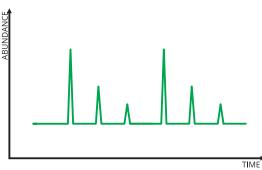
Chemists / scientists and lab technicians have not been trained to properly handle high purity gas equipment. Many times gas cylinder regulators have changed gas service by simply changing the inlet connection. Worse yet is when end users are inadequately connecting a series of gas chromatographs with old and worn out fittings.


Impurities Impact On Analytical Results

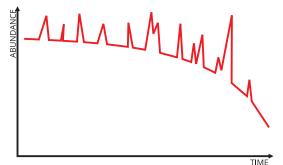
Normal Base Line


A normal baseline is flat, without peak and no drifts.

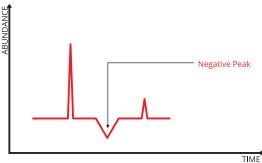
Upward (Positive) Drift


Cause: Damage to the stationary phase of the GC column

Baseline Noise


Cause: Contaminated column and/or air leak

Desired Chromatogram


A normal chromatogram has a stable baseline with well separated and well separated peaks

Downward (Negative) Drift

Cause: Back out of contaminants from the detector

Negative Peaks

Cause: Dirty detector

Other Chromatogram Problems	Cause
Offset peaks	Contaminated column and/or contaminated detector, unstable carrier gas flow
Wander peaks	Contaminated carrier gas
Irreproducible peak heights or areas	Baseline disturbance
No peaks at all	Problem with carrier gas flow
Selective sensitivity loss	Contamination of the column
Retention time shift	Contaminated column
Rapid column performance degradation	Exposure to oxygen, particularly at elevated temperature
Tailing peaks	Debris in the liner or column

Quick Reference Application Guide

Application	Gas Requirement	Purity	Flow Capacity	Beaco	onMedaes Recommendations
				Single Gas Generator	Combined Gases Generator
		Products fo	or Gas Chromat	ography	
	Hydrogen (H) for fuel Gas	99.999% [5.0]	30-50	HYDRO50	IDSTATION ; GCSTATION; H2-N2STATION
	Zero air for flame gas	HC Free	300-500	AERO40	FIDSTATION ; GCSTATION ; PIDSTATION
GC-FID	H ₂ for capillary carrier gas	99.99995% [7.5]	Up to 10 cc	HYDRO65	FIDSTATION ULTRA ; GCSTATION ULTRA ; H2-N2STATION ULTRA
	N ₂ for packed carrier gas	99.999% [5.0]	20-50	NITROSTATION ULTRA	FIDSTATION ULTRA ; GCSTATION ULTRA ; PIDSTATION ULTRA
	N, for make-up gas	99.999% [5.0]	30-50	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
GC FPD	Hydrogen (H ₂) for fuel Gas	99.999% [5.0]	60-90	HYDRO50	FIDSTATION ; GCSTATION; H2-N2STATION
	Zero air for flame gas	HC Free	90-120	AERO40	FIDSTATION ; GCSTATION ; PIDSTATION
GC NPD	H, for capillary carrier gas	99.99995% [6.5]	up to 50 cc	HYDRO65	FIDSTATION ULTRA ; GCSTATION ULTRA ; H2-N2STATION ULTRA
	N, for make-up gas	99.999% [5.0]	up to 30 cc	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
GC ECD	N ₂ for carrier gas	UHP-Zero Grade	up to 60 cc	NITROSTATION ULTRA	FIDSTATION ULTRA ; GCSTATION ULTRA ; PIDSTATION ULTRA
	N, for make-up gas	99.999% [5.0]	up to 100 cc	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
GC TCD	H_{2} as carrier gas	99.99995% [7.5]	up to 50 cc	HYDRO65	FIDSTATION ULTRA ; GCSTATION ULTRA ; H2-N2STATION ULTRA
GC ATD	Air for purge	Dry Air	< 2L/Min	AERO50	FIDSTATION ; GCSTATION ; PIDSTATION
GC AED	N ₂ for carrier gas	Ultra-Zero Grade	< 1L/Min	NITROSTATION ULTRA	FIDSTATION ULTRA ; GCSTATION ULTRA ; PIDSTATION ULTRA
GC ELSD, HALL	Hydrogen (H ₂) as reaction gas	99.999% [5.0]	70-200	HYDRO50	FIDSTATION ; GCSTATION ; PIDSTATION
		Products for	r Liquid Chroma	tography	·
LCMS API/LCMS	Air for nebulizer gas	Dry air	18L/Min	AERO50	DUO18LCMS
APCI Electrospray	Nitrogen (N ₂) for curtain	HC free 99.5%	5-35L/min	NITRO20	-
LCMS/MS, TOF	Sheath shield gas	99% [2.0]	20,35,60L/min	NITRO18LCMS	NITRO20LCMS ; DUO18LCMS; TRIO18LCMS
		Produc	ts for Spectros	сору	
FT-IR	Purge gas for sample compartment, optics, air bearing and microscope	CO ₂ free air	14-85 L/min	AERO50 FTIR	-
NMR	Air for lifting spinning and ejecting	Dry air	up to 300L/min	AERO20	-
ICP	Nitrogen (N ₂) for purge gas	99.995% [4.5+]	up to 9L/min	NITRO40 ICP	-
AA	Air for oxidant gas	Dry Air	28L to 200L/min	AERO50	-
		Produ	ucts for Analyze	ers	
ТОС	Air	Dry air, CO free	100-500 cc	AERO50 TOC	-
	Nitrogen (N ₂) for carrier gas or combustion gas	99.999% [5.0]	50-700 cc N ₂	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
THA	Zero air for FID	HC free	50-500 cc	AERO40	FIDSTATION ; GCSTATION ; PIDSTATION
	Hydrogen (H ₂) for fuel gas	99.999% [5.0]	5-50 cc	HYDRO50	FIDSTATION ; GCSTATION; H2-N2STATION
DSC	Air for shield	Dry air	100 cc	AERO50	FIDSTATION ; GCSTATION ; PIDSTATION
TGA	Air as furnace gas	Dry air	100 cc	AERO50	FIDSTATION ; GCSTATION ; PIDSTATION
	Nitrogen (N ₂)	UHP-Zero Grade	100 cc	NITROSTATION ULTRA	FIDSTATION ULTRA ; GCSTATION ULTRA ; PIDSTATION ULTRA
TOD	Nitrogen (N ₂) for carrier gas	UHP-Zero Grade	300 cc	NITROSTATION ULTRA	FIDSTATION ULTRA ; GCSTATION ULTRA ; PIDSTATION ULTRA
CO ₂ Analyzer	Air for calibration	CO ₂ & HC	550-1000 cc	AERO60	-

Quick Reference Application Guide

Application	Gas Requirement	Purity	Flow Capacity	Beac	onMedaes Recommendations
				Single Gas Generator	Combined Gases Generator
		Oth	ner Applications	5	
Sample Preparation	Nitrogen (N ₂) for solvent preparation	95-99%	up to 130 L/min	NITRO15LS	NITRO20LCMS ; DUO -18LCMS ; TRIO18LCMS
Auto Sample	Air for pneumatic controls	Dry air	28 L/min	AERO50	_
	Nitrogen (N ₂) for sample injector	99.999% [5.0]	550 cc	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
Circular Dichroism	Nitrogen (N ₂)	99.999% [5.0]	-	NITRO50	GCSTATION ; PIDSTATION ; H2-N2STATION
ELSD Detector	Nitrogen (N ₂)	98% [1.8]	2 - 8 L/min	NITRO15	_
Particle sizing by laser difraction	Air for nebulizing	Dry air	-	AERO5	-
Inorganic Spectroscopy	Oxygen (O ₂)	99.995% [4.5]	3 -6 L/min	OXY40	-
Organic Spectroscopy	Oxygen (O ₂)	99.995% [4.5]	7 L/min	OXY40	-
MOCVD	Hydrogen (H ₂)	99.99995% [6.5]	250 ml/min - 2L/min	HYDRO70	_
Optical Protection	Air for protection gas	Ultra Zero air, CO ₂ free, HC free	1 -1.5 L/.min	AERO60	-

Glossary

AA - Atomic Absorption **MOCVD -** Metal Organic Chemical Vapor Deposition AED - Atomic Emission Detector MS - Mass Spectrometer ATD - Automated Thermal Desorption **NMR -** Nuclear Magnetic Resonance **APCI** - Atmospheric Pressure Chemical Ionization NPD - Nitrogen Phosphorous Detector **CVD** - Chemical Vapor Deposition PDECD - Pulse Discharge Electron Capture Detector **DID** - Discharge Ionization Detector PID - Photoionization Detector DSC - Differential Scanning Calorimetric SFE - Super-critical Fluid Extraction **DTA** - Differential Thermal Analysis SFC - Super-critical Fluid Chromatography ECD - Electron Capture Detector TCD - Thermal Conductivity Detector **ELSD** - Evaporative Light Scattering Detector TGA - Thermal Gravimetric Analysis FID - Flame Ionization Detector TOC - Total Organic Carbon **FPD -** Flame Photometric Detector TOD - Total Oxygen Demand FTIR - Fourier Transform Infrared Detector TOF - Time of Flight GC - Gas Chromatography HID - Helium Ionization Detector HPLC - High Performance Liquid Chromatography ICP - Indictively Coupled Plasma **LC** - Liquid Chromatography

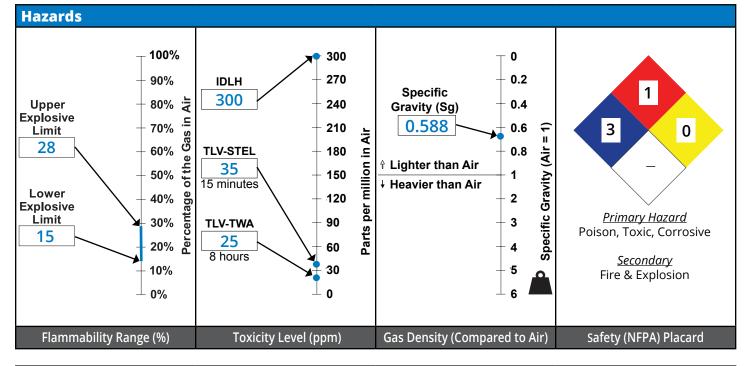
MP-AES - Microwave Plasma - Atomic Emission Spectrometer

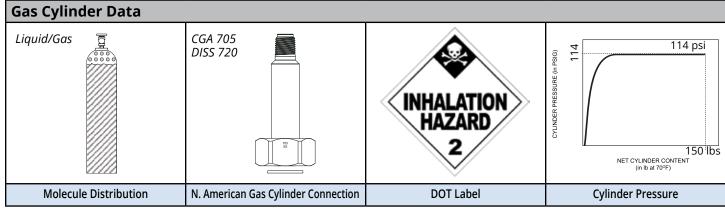
Table Of Gas Properties & Material Compatibilities

Gas	P	Prima	ry Ha	zard	s		I	leta	s			Plas	stics		Ela	ston	ners		osive /els		cicity vels	Physi	cal Prop	perti
	Asphyxiant	Toxic	Flammable	Corrosive	Oxidizer	Aluminum	Brass	Copper	Monel	Stainless Steel	Kel-F	Teflon	Tefzel	Kynar	Viton	Buna-N	Neoprene	LEL (% in Air)	UEL (% in Air)	TLV-TWA (ppm in Air)	TLV-STEL (ppm in Air)	Specific Volume (ft³/lb)	Boiling Point @ 1 atm (°F)	Specific Gravity (Air=1)
ACETYLENE	Х		Х			S	S	U	S	S	S	S	S	S	S	S	S	2.5	100	-	-	14.77	-119.6	
AIR		X	X	X	Х	S	S	S	S	S	S	S	S	S	S	S	S	-	-	-	-	12.55	-317.8	
AMMONIA ARGON	Х	X	X	Х		S S	U S	U S	S S	S S	S S	S S	S S	U S	U S	S S	S S	15.0	28.0	25	35	22.49	-28.3	0.5
ARSINE		X	X			-	S	S	S	S	S	S	S	S	S	S	S	-	-	.05	-	9.68 4.91	-79.9	2.6
BORON TRICHLORIDE	_	X		Х		U	D	D	S	S	S	S	S	-	-	-	-	-	-	-	-	3.18	55.1	4.0
BORON TRIFLUORIDE		Х		Х	Х	-	D	D	S	S	S	S	S	-	-	-	-	-	-	1C	-	5.68	-147.5	
BROMINE TRIFLUORIDE		Х		Х		D	D	D	S	S	D	D	S	U	U	U	U	-	-	-	-	415.1	258.2	4.
1.3-BUTADIENE	X	X	X			S	S	S	S	S	S	S	S	S	S	S	S	2.0	12.0	2	-	6.98	23.7	1.8
n-BUTANE 1-BUTENE	Х		X X			S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	1.8 1.6	8.4 10.0	800	-	6.45 6.70	31.0 21.1	2.0
cis-2-BUTENE			X			S	S	S	S	S	S	S	S	S	S	S	S	1.7	9.7	-	-	6.61	53.1	1.9
trans-2-BUTENE			X			S	S	S	S	S	S	S	S	S	S	S	S	1.7	9.7	-	-	6.62	47.3	1.
CARBON DIOXIDE	Х					S	S	S	S	S	S	S	S	S	S	D	D	-	-	5000	3000	8.74	-126.5	-
CARBON MONOXIDE		X	X			S	S	S	S	S	S	S	S	S	S	S	S	12.5	74.0	25	-	13.80	-312.7	-
CHLORINE CHLORINE TRIFLUORIDE		X X		X X	Х	U U	<u>U</u> -	<u>U</u>	S S	S S	S D	S D	S S	S U	S U	U U	U	-	-	.5	-	5.39 4.09	-28.8 53.1	2.
DEUTERIUM	Х	~	X			S	S	S	S	S	S	S	S	S	S	S	S	4.9	75.0		-	96.0	-417.0	
DICHLOROSLANE		Х	X	Х		U	-	-	S	S	S	S	S	S	-	-	-	4.1	98.8	-	-	3.72	46.7	3.4
DI-, MONO-, AND		х	х	х		U	U	U	s	s	s	S	s	s	U	U	_	-	_	-	-	-	-	
TRIMETHYLAMINESS		~		~													6					6.04	67	2
DISILANE ETHANE	Х		X			S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	- 3.0	- 12.4	-	-	6.01 12.76	6.7	2.
ETHYL CHLORIDE	~		X			S	S	S	S	S	S	S	S	S	S	S	S	3.8	15.4	100	_	5.82	54.0	2.
ETHYLENE	Х		X			S	S	S	S	S	S	S	S	S	S	S	S	2.7	36.0	-	-	13.71	-154.8	-
FLUORINE		Х		Х	Х	D	D	D	S	S	D	D	D	D	U	U	U	-	-	1	2	10.18	-306.8	1.
HALOCARBON-14						S	S	S	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	2
HALOCARBON-23 HALOCARBON-116	X X					S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	-	-	-	-	5.48 2.77	-115.9	
HELIUM	X					S	S	S	S	S	S	S	S	S	S	S	S	-	-	-	-	96.67	-452.0	
HYDROGEN	Х		Х			S	S	S	S	S	S	S	S	S	S	S	S	4.0	75.0	-	-	191.95	-423.2	_
HYDROGEN BROMIDE		Х		Х		U	U	U	S	S	S	S	S	S	S	U	U	-	-	3C	-	4.74	-88.0	2.
HYDROGEN CHLORIDE		X		X		U	U	U	S	S	S	S	S	S	S	U	U	-	-	5C	-	10.55	-120.8	-
HYDROGEN FLUORIDE HYDROGEN SULFIDE		X X	X	X X		U S	U S	U -	S S	S S	S S	S S	S S	S S	U U	U S	U S	- 4.0	- 44.0	3C 10	- 15	5.65	-108.7	4.
ISOBUTANE	Х		X			S	S	S	S	S	S	S	S	S	S	S	S	1.8	8.4	-	-	-	-	1.
ISOBUTYLENE	Х		X			S	S	S	S	S	S	S	S	S	S	S	S	1.8	9.8	-	-	-	-	
KRYPTON	Х					S	S	S	S	S	S	S	S	S	S	S	S	-	-	-	-	4.61	-244.1	2.
METHANE	Х	X	X			S	S	S	S	S	S	S	S	S	S	S	S	5.0	15.0	-	-	24.06	-258.7	-
METHYL CHLORIDE METHYL FLUORIDE		X X	X X			U S	S S	S S	S S	S S	S S	S S	S S	S S	S	U	U	7.0	17.4	50	100	4.83	-11.2	1.
NEON	Х					S	S	S	S	S	S	S	S	S	S	S	S	-	-	-	-	19.18	-410.9	-
NITROGEN	Х					S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	13.80		-
NITROGEN DIOXIDE		Х		Х	Х	S	U	U	U	S	S	S	-	-	U	U	U	-	-	3	5	-	-	
NITROGEN TRIFLUORIDE		X			X	-	S	S	S	S	S	S	S	S	S	-	-	-	-	10	-	5.43	-200.2	
NITROUS OXIDE	Х				Х	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	-	-	50	-	8.74 1.87	-128.3	
OCTAFLUOROPROPANE	X					S	S	S	S	S	S	S	S	-	-	S	S	-	-	-	-	2.01	-34.3	
OXYGEN					Х	D	S	S	S	D	S	S	S	S	D	U	D	-	-	-	-	12.08		
PHOSPHINE		Х	Х			S	-	-	S	S	S	S	S	-	-	-	-	-	-	.03	1	11.30	-126	1.
PROPANE	X		X			S	S	S	S	S	S	S	S	S	S	S	S	2.1	9.5	-	-	8.62	-43.7	1.
PROPYLENE SILANE	Х		X X			S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	U S	2.4	11.0	- 5	-	9.06 11.98	-53.8 -170.4	
SILICON TETRACHLORIDE		Х		Х		U	U	U	S	S	S	S	S	S	U	U	U	-	-	-	-	8.25	136.6	
SILICON TETRAFLUORIDE		X		X		U	U	U	S	S	S	S	S	S	U	U	U	-	-	-	-	3.69	-148.3	
SULFUR DIOXIDE		Х		Х		S	U	S	S	S	S	S	S	S	S	U	U	-	-	2	5	5.95	13.8	2.
SULFUR HEXAFLUORIDE	Х					S	S	S	S	S	S	S	S	S	S	S	S	-	-	1000	-	2.62	-90.8	
SULFUR TETRAFLUORIDE TUNGSTEN HEXAFLUORIDE		X X		X X		U U	U U	U U	S S	S S	S S	S S	S S	S S	U U	U U	U U	-	-	-	-	3.53 1.26	-53.5 63.0	
XENON	Х	\vdash				S	S	S	S	S	S	S	S	S	S	S	S	<u> </u>	-	-	-	2.93	-162.6	

NFPA 704 -HMIS

Hazardous Materials Identification System

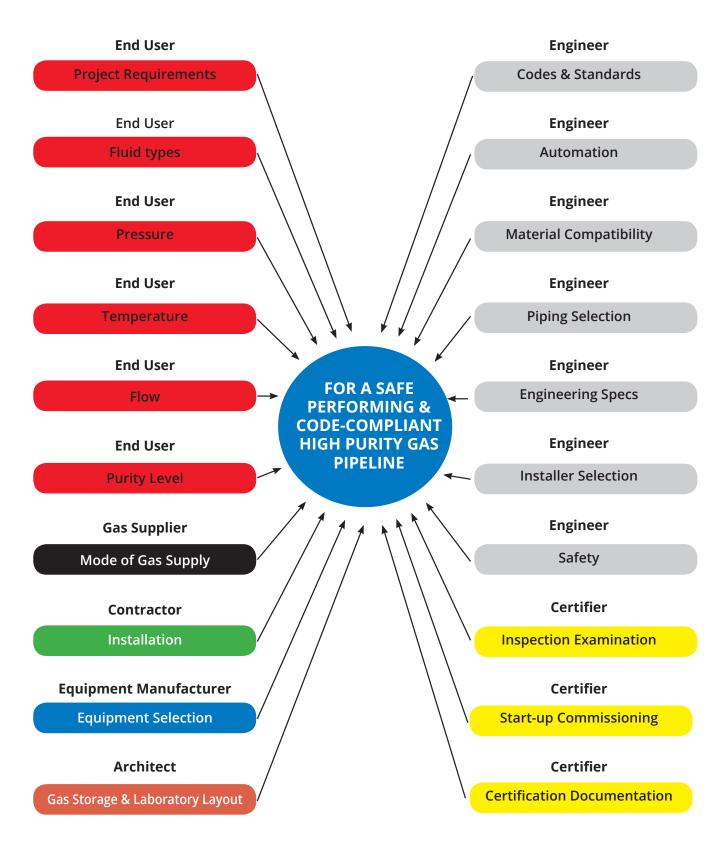

4	EXTREME Highly Toxic	<u>_TH HAZARD</u> on short-term exposure.	4	FLAMMABILITY HAZARD EXTREME Extremely flammable gas or liquid. Flash Point: below 73° F
3 2 1	apparatus mu MODERATE Breathing app should be wor SLIGHT	aratus and face mask	3 2 1	SERIOUS Flammable. Flash Point: 73° F to 100° F MODERATE Combustible. Requires heating to ignite. Flash Point: below 200° F SLIGHT Slightly combustible. Requires strong heating to ignite.
0	MINIMAL No precaution		0	MINIMAL Will not burn under normal conditions.
	<u>SPEC</u>	IFIC HAZARD		INSTABILITY HAZARD
	OX OXY ACID ALK COR W	OXYGEN OXDIZER ACID ALKALI CORROSIVE Use NO WATER	4 3 2 1 0	 EXTREME Explosive at room temperature. SERIOUS May detonate if shocked or heated under confinement or mixed with water. MODERATE Unstable. May react with water. SLIGHT May react if heated or mixed with water. MINIMAL Normally stable. Does not react with water.


Gas Data Sheet

Example

Ammonia (NH₃)

CAS #: 7664-41-7 **UN #:** 1005 **General Description:** A colorless, toxic, alkaline, flammable, liquefied gas with a pungent odor, irritating to eyes, skin and mucous membranes in high concentrations. **Trade Names:** Anhydrous ammonia


Material Compatibility														
В	В	В	G	G	G	В	G	В	G	G	В	G	В	B Bad
Aluminum	Brass	Copper	Monel	Stainless Steel	Teflon (PTFE)	Nylon (PVC)	Tefzel	Kymar	Kel-F (PCTFE)	Buna-N	EPDM	Neoprene	Viton	G Good
Metals					Plastics					Elast	bbers)			

For more gas data reference sheets, please visit our online reference library at bmgasdata.com

Design & Construction Cycle Who's Involved?

END USER ARCHITECT CHRINER **GAS REQUIREMENTS** EQUIPMENT SPECIFICATIONS LABORATORY THIRD PART VERIFICATION AYOUT Safe performing code compliant ENGINEERS within budget profitable GAS CONTAINERS EQUIPMENT AND on-time MOLECULES PIPING INSTALLADS Grsphonucer GAS CONTROL EQUIPMENT EQUIPMENT MANUFACTURER

Pipeline Design Criteria

Pipeline Design Key Steps

STEP 1	STEP 2	STEP 3	STEP 4
GAS SUPPLY MODE	CYLINDER STORAGE	GAS CYLINDER CONTROL EQUIPMENT	PIPELINE TYPE
Determine the flow pattern: -Max flow rate -Steady flow rate -Monthly usage Establish the purity required delivered to each point of use List the pressure for each gas at each point of use What is the best storage cylinder type? - High pressure cylinders -Liquid cylinders -Gas generators	Cylinder storage: - Inside laboratory -Cylinder room/closet -Loading dock -Gas cabinet Sprinkers available? You can store twice as much gas in a room equipped with sprinklers Is the gas toxic, flammable, inert, or oxidizer? Gas segregation storage is required How many gas cylinders? Meet Maximum Allowable Quantity as per NFPA 55 Explosion control requirements Space planned for full and empty cylinders? Are you using elevators to transport cryogens?	Is gas supply interruption allowed? -Switchover manifold -Simple regulators Desired pipeline pressure per gas? Flow requirement per gas -Equipment Cv -How many cylinders? Purity level required per gas: Ultra high purity: >99.9995 High Purity = 99.999 Commercial: < 99.99 -Brass -Stainless steel -Hoses -Regulators -Valves Cylinder supply status? -Alarm box -Automatic shutdown	Material compatibility: -Stainless steel -Copper -Teflon -Vacuum jacketed piping Purity level requirements: -Cleanliness -Desorption -Off gassing -Leak integrity -Installer qualification Flow requirements per gas: -Pipe diameter Pipeline pressure per gas: -Wall thickness Pipe or tube? Joints: -Silver brazed -Soldered -Compression fittings -Flared fittings -Threaded (NPT, ISO, BSP) -Welded (orbital or TIG) Can you pipe away all the relief valves to a
Ontint 1			common pipe?
Optimized gas supply mode will require one delivery of cylinders per week	The design shall meet applicable standards, codes, and regulations	Select the proper BeaconMedaes manifold for each gas to meet application needs	Select the proper pipeline construction for each gas to meet application needs

BeaconMedaes -The Pipeliner

Pipeline Design Key Steps

STEP 5	STEP 6	STEP 7	STEP 8
PIPELINE EQUIPMENT	PIPELINE FILTRATION	POINT-OF-USE CONTROL	SAFETY & AUTOMATION
Supply isolation valve (aka source valve) Emergency tie-in valve -Back up feed -Sampling point -Test port -Vent valve Pipeline pressure relief valve -Equipment PRV are there to protect the equipment Pipeline pressure gauge High/low pressure switches Pressure transmitters Zone valve box for high purity gases Master gas valve boxes	Removal of: -Particles -Oxygen -Moisture -Hydrocarbons -Carbon dioxide -Virus -Mold -Bacteria Trap and filter change out valves: -Inlet isolation -Service isolation -Vent -By-pass	Pressure reducing and control Flow measurement and control Final filtration -Particles -Oxygen -Moisture -Hydrocarbons -Carbon dioxide -Virus -Mold -Bacteria Multiple delivery point valves Gas turrets Wall outlets for high purity gases Location of each point-of-use: -On a bench -In a fume hood -On a wall -Hanging from the ceiling	Gas detection -Room monitoring -Gas cabinet -Point-of-use Voice dialer -Emergency situation -Need fresh cylinders Excess flow -Excess flow switch -Excess flow valve Automatic shut-off controller -Key to reset -Fail safe automatic shutoff valve Signage & Audio/Visual Alarm -Buzzer and/or beacon External signal -BMS/DDC -Fire alarm system -Dry contact or 4-20 mA Remote shutdown actuation
Provide pipeline protection, adaptability and serviceability	Maintain integrity of the pipeline Allow easy and contamination-free filter change-outs	Provide ease of gas control at each point-of-use	Provide notification to key personnel and/or system of present or potential hazardous conditions

Questionnaire Point-Of-Use Requirements

PURPOSE OF THIS QUESTIONNAIRE

We are currently in the design stage of a high purity gas delivery system. The purpose of this questionnaire is to gather information on the gas requirements of the analytical process or experiment. The goal is to make sure to supply each application with gas at the appropriate quality, flow and pressure. Would you please complete this questionnaire to the best of your knowledge and return to:

john.doe@xyzengineering.com

Please use one questionnaire per analytical equipment, process or experiment.

IDENTIFICATION		
Questionnaire completed by	Date	
Denis Hache	01-18-2017	
Telephone number		
803-817-5600		
E-mail address		
denis.hache@beaconmedae	es.com	
Laboratory name, department, section		
Analytical Instruments L	ab	
Building name or number	Room number	
J. Armand Bombardier	2700	

DESCRIPTION OF YOUR APPLICATION

Analytical equipment, description of experiment	or process (please provide: tag number, name, type of d	etector, brand of equipment, model number)
Gas Chromatograph, Flam	ne Ionization Detector + Thermal Conductivity	, Shimandzu, GC-2014
Is it an existing or new requirement?	Is it a temporary or permanent requirement?	If temporary, for how long?
New	Permanent	N/A

DESCRIPTION OF YOUR APPLICATION			
GAS 1	GAS 2	GAS 3	GAS 4
Gas name	Gas name	Gas name	Gas name
Helium	Hydrogen	Air	
Minimum purity (gas grade or 9s)	Minimum purity (gas grade or 9s)	Minimum purity (gas grade or 9s)	Minimum purity (gas grade or 9s)
99.995%	99.995%	Dry air	
Impurities to avoid	Impurities to avoid	Impurities to avoid	Impurities to avoid
Moisture + organic comp.	Moisture + organic comp.	Moisture + organic comp.	
Temperature	Temperature	Temperature	Temperature
Not applicable	Not applicable	Not applicable	
Purpose	Purpose	Purpose	Purpose
Carrier gas + make up gas	Flame fuel to FID	Air supply to FID	
Supply pressure	Supply pressure	Supply pressure	Supply pressure
Inlet 980 KPa	Inlet 500 KPa	500 KPa	
Flow (peak <i>and</i> per week)	Flow (peak <i>and</i> per week)	Flow (peak <i>and</i> per week)	Flow (peak <i>and</i> per week)
30 ml/min	40 ml/min	400 ml/min	
SPI	CIAL REQUIREMENTS OR	ADDITIONAL INFORMAT	ION
	l work in both split	and splitless mode.	
Please note any additional informa	tion or special requirements. If requ	ired, please attach another sheet to	this document

Monte static Monte static<	Image: state		6		Project Name:	XYZ Laboratory Fit Out	' Fit Out												- a	Revision:			
Image: intermediate i	Image: bold between the problem of the prob		BE	ACON	Location:	tere, ST													ă	ate:			
Image: constraint of the sector of	Image: constraint of the		mons		Description		CO ₂ (gas)	co	Air		Air X.P. (H.P.)	Nitrog (gas		Nitrogen	Nitrogen X.P. (H.P.)	Argo	-	Helium		Hydrogen		Dxygen	Propane
10 10 Momenta 10 </th <th>10 10<</th> <th>_</th> <th></th> <th></th> <th></th> <th>PS</th> <th></th> <th>(liquid)</th> <th></th> <th>ml/min</th> <th></th> <th>PSI</th> <th></th> <th>(liquid)</th> <th></th> <th>PSI</th> <th></th> <th></th> <th></th> <th></th> <th>\square</th> <th></th> <th>PSI</th>	10 10<	_				PS		(liquid)		ml/min		PSI		(liquid)		PSI					\square		PSI
1 1	1 1	9	123	D-19	ICP - atom scan 25 - metal analyzer												20000		-		_		
10 10<	1 1	61	123	D-18	Wickbold														1	4.5	29		
10 10<	10 10<		122	D-17	Isotherm oven							20	25						-				
10 10<	10 10<		119	D-22	Antek & computer - nitrogen											40	200				40		
10 10<	10 10<		119	D-21	Antek 9000 & computer - sulfurs											40	200				40		
10 10<	10 10<		119	D-14	GC DHAX HP/AC HP 6890 & computer				75	600				22							0		
10 10<	10 10<		119	D-15	SIMDIS HP/AC, HP 6890 & computer				75	300													
10 10<	10 10<		119	D-25	Titrometer Mettler DL37							10	25						-				
10 10<	10 10<	21	119	D-23	LECO/C-200 computer & printer																40		
10 Cold C	10 10<	22	119	D-26	Isotherm oven							20	25										
10 - - D No No <td>10 1 <th1< th=""> 1 1 1</th1<></td> <td>77</td> <td>119</td> <td>D-24</td> <td>JETOT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td></td>	10 1 <th1< th=""> 1 1 1</th1<>	77	119	D-24	JETOT										-				$\left \right $				
10 0	10 10<	35	119		Dry ice Presto			×															
10 1 Common production state state 1 <th1< th=""> 1 <th<< td=""><td>10 10 0</td><td>-</td><td>119</td><td>D-16</td><td>Black room</td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<></th1<>	10 10 0	-	119	D-16	Black room							15											
10 Consolutionalizatio alize i zeredi zeredio zeredio zeredio zeredio z	10 Constrained Constrained C	-	113	D-7	GC Sivers, HP 6890, Sivers 355				40	25							$\left \right $				6		
10 10 Construction 1 10 12 10 12	10 10<	-	113	113	GC Wason gas analyzer				60	25		06	25								2		
10 10<	10 10 0.0 0.0 1	+	113	D-5	Caral Hewlett Packard 5890 & printer				40	25							\vdash	\vdash	\vdash	\vdash	5		
10 12 Model 12 1<	10 10<	+	113	D-6	GC AC gas analyzer				06	25		6	25					┢	\vdash	┢	2		
11 12 My Fedeoca2 Phinetries 1 1 13 13 1 13 <td>11 12 M PGAGCEZPAMMENTAGE 1</td> <td>-</td> <td>109</td> <td>D-2</td> <td>H-109 fume hood</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	11 12 M PGAGCEZPAMMENTAGE 1	-	109	D-2	H-109 fume hood							100					$\left \right $		-				
11 Display Dis	11 12<	37	11	D-3	PAV PG-59 C-622, Prentex-1997						305								\vdash				
11 126 Clopanity 1 <th1< th=""> 1 <th1< th=""> 1 <th1< td=""><td>11 124 Currontion 1 <</td><td>38</td><td>111</td><td>D-3</td><td>PAV PG-59 C-748, Prentex-1998</td><td></td><td></td><td></td><td></td><td></td><td>305</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<>	11 124 Currontion 1 <	38	111	D-3	PAV PG-59 C-748, Prentex-1998						305												
11 12 0	11 12 0	74	111	D-28	C3 (propane)																		15
101 101 101 102 <td>10 1</td> <td>75</td> <td>111</td> <td>D-4</td> <td>Oven</td> <td></td> <td>×</td>	10 1	75	111	D-4	Oven																		×
101 Elements 101 50	10 10 10 30 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10<	7	119		ISL	100																	
110 — Definition (3.n. A) 665 (5.1) 100 35 — 1 — 1 <th1< th=""> <th1< th=""> <th1< th=""> <!--</td--><td>110 </td><td>6</td><td>119</td><td>Ι</td><td>ISL</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<>	110	6	119	Ι	ISL	100																	
113 — B.L. 100 35 — 1 20 25 1 <th1< th=""> 1</th1<>	101 C R1 C R1 C R1 C R1 C R1 C R1		119	I	Distillation ISL no. 1 AD 96 5G ISL	100													-		_		
113 Des MoRT 1 1 20 25 1 <th1< td=""><td>103 0.001 0.011 0</td><td>12</td><td>119</td><td>I</td><td>ISL</td><td>100</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td></th1<>	103 0.001 0.011 0	12	119	I	ISL	100	_											_	_				
110 D27 Itemeter 0 </td <td>101 D27 Thrometric 1 <</td> <td>14</td> <td>119</td> <td>D-9</td> <td>MCRT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>25</td> <td></td>	101 D27 Thrometric 1 <	14	119	D-9	MCRT							20	25										
110 D-13 COC flash point D	110 D13 COC flash point 1 <th1< th=""></th1<>	20	119	D-27	Titrometer							10	25										
113 D-11 D-20 D-11 D-10 D-10 <thd< td=""><td>113 D-11 Common 1 C 20 <t< td=""><td></td><td>119</td><td>D-13</td><td>COC flash point</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40 mbar</td></t<></td></thd<>	113 D-11 Common 1 C 20 <t< td=""><td></td><td>119</td><td>D-13</td><td>COC flash point</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40 mbar</td></t<>		119	D-13	COC flash point																		40 mbar
10 D-12 Gundath 1 5 3600 1 <	113 D-12 Cum belli 1		119	D-11	PSA-70							20											
113 D-10 Induction coven (not on frawing) 1	10 Induction oven (not on drawing) 10 10 10 100	70	119	D-12	Gum bath					36000									-				
112 Futue Positi No 2 ¹⁰ 2 ¹	112 Fune Positi Positi 2 ¹⁰ <th2< td=""><td>76</td><td>119</td><td>D-10</td><td>Induction oven (not on drawing)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>100</td><td></td><td></td></th2<>	76	119	D-10	Induction oven (not on drawing)														-		100		
112 Future DHA 75 350 15 350 15 36 75 36 75 35 75 35 75 35 75 35 75 350 75 300 75 100 ⁴ 112 Future ITSIMDIS 1	112 Future DHA 75 350 15 350 75 36 75 35	91	112	Future	_							30	2 ⁽¹⁾						_				
112 Future LTSMDIS 0 <	112 Future LTSMDIS 1	-	112	Future					75	350								+		-	_		
112 Future HTSMDIS 1	112 Future HTSMDIS 1 <th1< th=""> <th1< th=""> 1 <!--</td--><td>97</td><td>112</td><td>Future</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td></td></th1<></th1<>	97	112	Future														_	_	_	_	_	
112 Future Foundoin Col Air CAI room CAI room </td <td>I12 Future Future Future Future Soo IOO IOO</td> <td>_</td> <td>112</td> <td>Future</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	I12 Future Future Future Future Soo IOO	_	112	Future	_													_					
CO, (ass) CO, (ass) CO, (ass) CO, (ass) Arr Arr Nitrogen Nitrogen Argon Helium Hydrogen Oxygen cylinders Lab CAI. room CAI. room<	Air Air Nitrogen Nitrogen Nitrogen Argon Helium Hydrogen Oxygen CM room	_	112	Future	Flowloop										300 100-200	(8)							
cylinders Lab Cyl.room Cyl.room Lab Cyl.room Cyl.	Cyl. room Cyl. room Lab Cyl. room Cyl.				Gas Service		CO ₂ (gas)	CO ₂ (liquid)	Air		Air X.P. (H.P.)	Nitrog (gas		Nitrogen (liquid)	Nitrogen X.P. (H.P.)	Argo		Helium		Hydrogen		Oxygen	Propane
e in psig 100 40 150 305 150 40 500 100 150 225 150	150 305 150 40 500 100 150 225 150 3.450 [77.233] - 177 [0.375] - 1700 [3.602] 20,400 [43.225] 1,505 [3.189] 1,225 [2.596] 4,500 [9.555]				Location of gas/liquid cylinders		Lab	Lab	Cyl. rc	moc	Cyl. room	Cyl. ro	mor	Lab	Cyl. room	Cyl. ro	m	Cyl. room		Cyl. room		yl. room	Cyl. room
140 [0.296] 36,450 [77.233] 177 [0.375] 1700 [3.602] 20,400 [43.225] 1,505 [3.189] 1,225 [2.596]	3,450 [77 233] 177 [0.375] 177 [0.375] 1700 [3.602] 20,400 [43.225] 1,505 [3.189] 1,225 [2.596]			_	Main pipeline pressure in psig		100	40	15(_	305	150		40	500	100		150		225		150	25
					Flow in ml/min. [scfh]	14	0 [0.296]		36,450 [7	7.233]		177 [0.:	375]		1700 [3.602]	20,400 [4;		1,505 [3.18		1,225 [2.596		00 [9.535]	•

BeaconMedaes -The Pipeliner

⁶⁰ Average of 200 ml/min., maximum of 500 ml/min. minimum purity of 99.995%
⁶⁰ Average of 100 ml/min., maximum of 200 ml/min. minimum purity of 99.75%

⁽⁰⁾ Average of 2 ml/min., maximum of 100 ml/min. ⁽²⁾ Average of 350 ml/min., maximum of 2000 ml/min. minimum purity of 99.995%

Gas Supply Modes Cryogenics

Cryogenic Plants (Air Separation)

Used by permission from Air Liquide, the copyright owner

Characteristics

Manufacturers	Primarily major gas companies
Products	Mainly N_2 , O_2 , Ar, He, H_2 , CO_2
Capacity	Several tons per day
Location	Independent site near major user
Pressure	In general below 200 psig
Purity	Commercial grade (can be purified)
Purpose	Merchant plant
Typ. Industry	All industries

Characteristics

Manufacturers	Original Equipment Manufacturers (OEM)
Products	Mainly N ₂ , O ₂ , Ar, He, H ₂ , CO ₂
Capacity	Generally around 15,000 gallons
Location	Road tankers and ISO containers
Pressure	Cryo: up to 60 psig - CO ₂ is diff.
Purity	Commercial grade (can be purified)
<mark>Purpose</mark>	Hauling product from ASP to tanks
Typ. Industry	All industries

Characteristics

Manufacturers	Chart, Taylor Wharton, Tomco
Products	Mainly N ₂ , O ₂ , He, Ar, H ₂ , CO ₂
Capacity	From 525 to 20,000 gallons
Location	End user sites
Pressure	Cryo: up to 500 psig - CO_2 : 350 psig
Purity	Commercial grade or better
<mark>Purpose</mark>	Product storage in liquid state
Typ. Industry	All industries

Characteristics

Manufacturers	Chart
Products	Mainly N_2 , O_2 , Ar, CO_2
Capacity	Up to 2,000 liters (liquid content)
Location	End user sites
Pressure	Cryo: up to 500 psig - CO_2 : 350 psig
Purity	Commercial grade or better
Purpose	Product storage in liquid state
Typ. Industry	Welding, restaurants, laboratories

Characteristics

Manufacturers	Chart, Taylor Wharton
Products	Mainly N_2 , O_2 , Ar, CO_2
Capacity	Up to 230 liters
Location	End user sites
Pressure	Cryo: up to 500 psig - CO ₂ : 350
Purity	Commercial grade or better
Purpose	Product storage in liquid state
Typ. Industry	All industries

Cryogenic Liquid Tankers

Used by permission from Air Liquide, the copyright owner

Cryogenic Storage Vessels

Micro-Bulks

Portable Liquid Cylinders

Image courtesy of **Chart Industries** www.chartindustries.com.

- CO₂: 350 psig

Gas Supply Modes

On-Site Generation

Large Size On-Sites: APSA & VPSA

Used by permission from Air Liquide, the copyright owner

Characteristics

Manufacturers
Products
Capacity
Location
Pressure
Purity
Purpose
Typ. Industry

Primarily major gas companies Mainly N_2 , O_2 , H_2 Several tons per day Mostly at customers' sites In general below 200 psig Commercial grade (can be purified) Supply gas for one application O_2 for pulp & paper, N_2 for electronics

Medium Size On-Sites: PSA -Membranes

Characteristics

Manufacturers
Products
Capacity
Location
Pressure
Purity
Purpose
Typ. Industry

Majors, AirSep, Dow, Parker Mainly N₂, O₂, H₂ Vary greatly (low to mid tons per day) Mostly at customers' sites In general below 200 psig Commercial grade (can be purified) Supply gas for one application Food packaging, bright annealing

Small Gas Generators

Table Top Hydrogen Generator

Nitrogen Generator

Characteristics

Manufacturers Products	BeaconMedaes , Parker, Peak & more Laboratory grade N ₂ , Air, H ₂ , O ₂
Capacity	Very low (from lpm to 100 scfh)
Location	End user sites
Pressure	In general below 200 psig
Purity	Both laboratory & commercial grade
Purpose	Chromatography, Spectrometry
Typ. Industry	Pharmaceutical, universities

Gas Supply Modes High Pressure Containers

Tube Trailers

Used by permission from FIBA Technologies, the copyright owner

Used by permission from FIBA Technologies,

Characteristics

Manufacturers	FIBA
Products	Mainly Air, He, N ₂ , O ₂ , Ar, H ₂
Capacity	Up to 150,000 scfh
Location	Hauling products from plants to cust.
Pressure	Rarely above 2400 psig
Purity	Any purity
Purpose	Temporary supply or cascading
Typ. Industry	All industries

Hydril Tubes

the copyright owner

Manufacturers **FIBA** P

Characteristics

Products	Mainly Air, He, N ₂ , O ₂ , Ar, H ₂
Capacity	Could be limitless
Location	Point of use sites
Pressure	Rarely above 2,400 psig
Purity	Any purity
Purpose	High pressure gas storage (medium)
Typ. Industry	All industries

Characteristics

Manufacturers	Norris, Taylor Wharton, Catalina
Products	All
Capacity	Vary greatly upon size and gas
Location	Point of use sites
Pressure	Up to 6000 psig
Purity	Any purity
Purpose	Individual or small applications
Typ. Industry	All industries

Consult the "Common Cylinder Size Comparison Between Gas Manufacturers" table on page 7 of this document.

High Pressure Cylinders

Codes, Standards & Regulation

ASME B31.3

Process Piping

Design of chemical and petroleum plants and refineries processing chemicals and hydrocarbons, water and steam. This Code contains rules for piping typically found in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals. This Code prescribes requirements for materials and components, design, fabrication, assembly, erection, examination, inspection, and testing of piping. This Code applies to piping for all fluids including: (1) raw, intermediate, and finished chemicals; (2) petroleum products; (3) gas, steam, air and water; (4) fluidized solids; (5) refrigerants; and (6) cryogenic fluids. Also included is piping which interconnects pieces or stages within a packaged equipment assembly.

Toxic Gas Ordinance Data Book

In 1988 the Santa Clara County Fire Chief's Association drafted a "Model Ordinance for Toxic Gas Regulation" in conjunction with the Santa Clara County City Manager's Association, the Santa Clara County Manufacturing Group and the Silicon Valley Toxics Coalition. This model ordinance was subsequently adopted into municipal code and county ordinance by the various jurisdictions within Santa Clara County as well as various other regulatory agencies as the "Toxic Gas Ordinance" or TGO. The TGO has been subsequently used as the base model for the 1994 Uniform Fire Code (UFC) amendments for Toxic and Highly-Toxic gases through the current Fire Code adoption.

Compressed Gas Association

Publications

CGA develops and publishes the broadest distribution of technical information, standards, and recommendations for safe and environmentally responsible practices in the manufacture, storage, transportation, distribution, and use of industrial gases.

NFPA 55

<u>Standard for the Storage, Use and Handling</u> of Compressed Gases and Cryogenic Fluids in Portable Stationary Containers, Cylinders, and <u>Tanks</u>

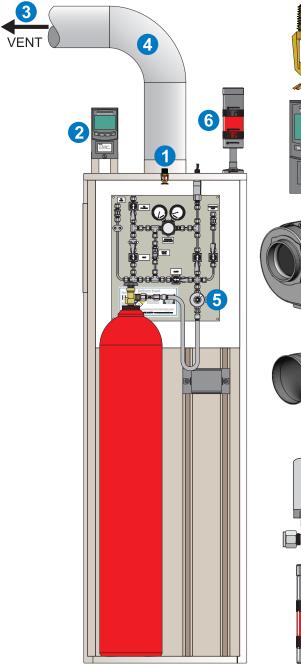
The most comprehensive industrial and medical gas storage and use document in the National Fire Codes®, NFPA 55 is essential for users, producers, distributors, and anyone who is involved with the storage, use, or handling of compressed gases or cryogenic fluids. This edition expands coverage and incorporates three NFPA® Standards as individual chapters:

- NFPA 50: Bulk Oxygen Systems at Consumer Sites
- NFPA 50A: Gaseous Hydrogen Systems at Consumer Sites
- NFPA 50B: Liquefied Hydrogen Systems at Consumer Sites

Additionally, the 2005 edition of NFPA 55 includes provisions for underground hydrogen storage and the use of hydrogen generating devices. The allowable storage requirements are coordinated for consistency with the requirements in NFPA 5000®. (54 pages, 2005)

General Safety Requirements as per the Toxic Gas Ordinance (TGO)

GENERAL REQUIREMENTS	CLASS I HIGHLY TOXIC	CLASS II TOXIC	CLASS III MODERATELY TOXIC	MINIMUM THRESHOLD QUNATITIES	PYROPHORIC	FUEL GAS
General Obligation for Storage & Use	x	x	x	х	х	x
Permit - Operations, Storage & Use	x	x	x	x	х	x
Permit - Install, Alter, Modify or Repair	x	x	x	-	х	x
Permit - Close, Decommission or Demolition	x	x	x	-	х	x
Compliance Plan	x	x	x	х	х	x
Emergency Response Plan	x	x	x	х	х	x
Protective Plugs & Caps in Place for Safety	x	x	x	х	х	x
Flow Limiting Orifice & Devices	x	-	-	-	х	-
Inert Gas Purge System	x	x	x	-	х	-
Automatic Fire Sprinkler	x	x	x	-	х	x
Emergency Control Station	x				х	
PIPING SYSTEMS						1
Installed and Leak Tested per ASME B31.3	x	x	x	-	х	x
Labeled per ASME A13/1	x	x	x	x	x	x
ESO Located at the Source and Point of Use	X	×	×	^	×	x
Excess Flow Control	×	×	×	-	×	2
Seismic Protection - Importance Factor	I = 1.5	l = 1.25	I = 1.0	-	l = 1.5	I = 1.0
		X	1		1 = 1.5 X	3
Welding Piping or Ventilated Enclosure	X			-		
Double Walled Secondarily Containment Piping	X	-	-	-	-	-
TESTING & MAINTENANCE (Annually, or in accordance with		1	1			_2
Gas Detection and Leak Monitoring Systems	X	X	-1	-	X	
Limiting Controls: Level, Temperature, Pressure or Flow	_2	_2	-2	_2	-2	_2
Manual and Automatic ESO Controls	X	X	_1	-	Х	_2
Alarms and Alarm Functions	Х	Х	-1	-	х	_2
EXHAUST VENTILATION SYSTEM	I	1				1
Gas Room	X	X	-	-	х	-
Gas Cabinet, VMB's and Exhausted Enclosures	X	X	_1	_3	Х	-3
Treatment to 1/2 IDLH at Point of Discharge	X	X	-	-	_3	-
EMERGENCY ALARM MONITORING & CONTROLS			1			
Gas Detection	X	х	X	-	х	
Optical Flame Detection	-	-	-	-	х	-
Smoke Detection	x	-	-	-	_3	-
Seismic Detection	x	x	x	-	-	-
Exhaust Flow	x	x	x	-	х	-
Manual or Remotely Actuated Automatic ESO	x	x	x	-	х	-
EMERGENCY SHUTOFF						
for Gas Detection	x	x	_1	-	х	
for Optical Flame Detection	-	-	-	-	х	-
for Smoke Detection	x	-	-	-	-3	-
for Seismic Sensor	x	x	-	-	-	-
for Exhaust Flow	x	x	-	-	х	-
for Manual or Remotely Actuated Automatic ESO	x	x	_1	-	х	x
for Activation of Automatic Fire Alarm System	x					
EMERGENCY POWER	1	1	1			•
for Gas Detection	x	x	2	-	х	
for Optical Flame Detection	-	-	-	-	X	-
for Smoke Detection	x	-	-	-	_3	-
for Seismic Sensor	x	x	-	-	-	-
for Exhaust Flow	x	x	_	_	x	-
for Manual or Remotely Actuated Automatic ESO	x	×	_1	-	x	x
	A .	A .		-	~	


X = Required per code.

1. May be required per Fire Code for materials having a NFPA hazard ranking of 3 or 4.

Required when provided, or as an alternate to other control requirements.
 May be provided to mitigate other code requirements.

BeaconMedaes -The Pipeliner

Gas Requirements Minimum Requirements as per NFPA 55

2

Water Supply For The Sprinkler

NFPA 55 - 6.16.3 Fire Protection - "Gas cabinets used to contain toxic, highly toxic, or pyrophoric gases shall be internally sprinklered."

Gas Detector (By BeaconMedaes ... Strongly Recommend)

NFPA 55 - 7.9.3.2.1.2 - Gas Detection - "The gas detection system shall monitor the exhaust system at the point of discharge from the gas cabinet, exhausted enclosure, or gas room."

Exhaust Fan (By Installing Contractor)

Indoor gas cabinets require ventilation. Hereunder are NFPA 55's exhaust fan requirements:

- Air velocity: 200 ft/min with access window open 150 ft/min (no less) at any single point.
- Explosion-proof classification might be required.

- Material compatibility of exhaust fan components with gas service to be verified.

Duct Work (By Installing Contractor)

Compatibility: The duct materials used must be compatible with the gas being vented.

Duct work must be installed to prevent any leaks to the atmosphere.

6

Fail-Safe Automatic Closing Valve (By BeaconMedaes)

NFPA 55 - 7.9.3.2.2 - Fail-Safe Automatic Closing Valve - "An approved automatic-closing fail-safe valve shall be located immediately adjacent to and downstream of active container, cylinder, or tank valves."

Warning Device (By BeaconMedaes or By Others)

NFPA 55 - 7.9.3.2.2 - Fail-Safe Automatic Closing Valve - "An approved automatic-closing fail-safe valve shall be located immediately adjacent to and downstream of active container, cylinder, or tank valves."

Treatment Systems (By Others)

*NFPA 55 - 7.9.3 - Treatment System - "*Except as provided in 7.9.3.1 and 7.9.3.2, gas cabinets, exhausted enclosures, and gas containing toxic or highly toxic gases shall be provided with exhaust ventilation, with all exhaust directed to a system designed to process accidental release of gas."

NFPA 55 - 7.9.3.2 - Use of Toxic Gases - "Treatment systems shall not be required for toxic gases in use where containers, cylinders and tanks are provided with controls specified in 7.9.3.2.1 (Gas Detector) and 7.9.3.2.2 (Fail-Safe Automatic Closing Valve)."

Purity Levels & Choice Of Materials

General Purpose Applications

Level 4 (99.99% +)

Contamination Protection

• This has the least stringent purity requirements

Applications

- Atomic Absorption (AA)
- Inductively Coupled Plasma (ICP)
- General Gas Chromatography (GC)

Examples of Components

Medical Grade Copper Pipes

High

Level

Silver Brazed Joints

General Purpose Switchover Manifolds

Pipe or Tube

Manifolds

Regulators

Soft Materials

loints

Valves

Hoses

Recommended Materials & Equipment		
Pipe or Tube	Copper, stainless steel, any soft	
Joints	Threaded, silver brazed, compression	
Manifolds	Cabinet-style, general purpose, hi-flow	
Soft Materials	All plastics & all polymers are good	
Valves	All types of valves	
Regulators	All types of regulators	
Hoses	All types of hoses	

General Purpose Regulators

Recommended Materials & Equipment

Copper, stainless steel (no soft tubing)

Threaded, silver brazed, compression

Cabinet-style, high purity, hi-flow

Preferences for plastics like Teflon

All types of valves as long as CFOS

Forged body with SS diaphragm

All types of hoses (cleaning is critical)

Medical Ball Valves

Purity Applications					
5	PURITY LEVEL	1			

Contamination Protection

• Requires a higher level of protection against contamination

Applications

• Gas chromatography where capillary columns are used and system integrity is important

Examples of Components

Nitrogenated Grade Copper Tubes

Brass Precision Compression Fittings

High Purity Switchover Manifolds

Forged Body Chrome-Plated Brass Regulators

High Purity Two-Piece Ball Valves

Purity Levels & Choice Of Materials

Critical Purity

Contamination Protection

Specific contamination control (one or two impurities)

Applications

- Electron Capture Detector
- ICP-MS

Examples of Components

Steel Tubing

Compression Fittings

Stainless Steel Precision

Pipe or Tube

Manifolds

Regulators

Soft Materials

loints

Valves

Hoses

Ultra High Purity Changeover Stations

Recommended Materials & Equipment

Stainless steel tube

Orbitally welded or compression

UHP PDC stations (brass or SS)

Teflon (minimize quantity of soft mat'l)

Brass diaphragm valve

Brass barstock body w/ SS diaphragm

Stainless steel hose

Electropolished stainless steel tube

Stainless steel diaphragm valve

SS barstock body w/ SS diaphragm

Stainless steel rigid pigtail

Ultra High Purity Applications

Contamination Protection

· This needs the highest level of purity

Applications

Trace measurement in gas chromatography

Examples of Components

Electroplated Stainless Steel Tubing

Orbital Welded loints

Ultra High Purity **Delivery Panels**

Stainless Steel Barstock Regulators

Ultra Clean VCR Fittings Diaphragm Valves

Orbitally welded, VCR fittings loints Manifolds Delivery panels or UHP PDC stations Soft Materials Teflon or PCTFE (minimize soft mat'l)

Valves

Hoses

Regulators

Pipe or Tube

Important Design Considerations Related To Gas Piping Installations

What do we want to achieve as designers of laboratory gas delivery systems?

The goal is to safely and efficiently transport and control a gas from its source to the points of use at the right:

Pressure, Purity, and Flow

at the right cost without introducing contaminants in the gas stream.

This is much easier said than done because, in order to achieve that goal, you have to know all the options available.

Connecting All Relief Valves & Vent Valves To A Common Vents

- Yes it is possible to do that as long as the following rules are respected:
- The gases must be compatible with each other and be compatible with the vent pipe materials;
- The pipes must be sized so that there is no flow restriction throughout the entire vent network;
- The vent pipe must discharge to a safe location and away from building air intakes.

Pipe Unions

All mechanical equipment fail or will require maintenance one day. All pipes/tubes connected to any manifold should be mounted with a pipe union. Not all pipe union is not made equal. We recommend pipe unions mounted with an o-ring seal as manufactured by Hart Industries and Superior Products.

Pressure Relief Valves

Gas equipment pressure relief valves are there to protect the gas equipment from over-pressure. The gas delivery system designer is responsible to provide a PRV adequate for any specific applications.

Zone Isolation Valves

Ceilings are NOT the best place to isolate a zone in case of an emergency. A better way of isolating area, rooms or floors is to use zone valve boxes specially made for high purity gases. We recommend to install in corridors adjacent to the zone to be isolated.

Emergency Tie-In

Tie-in kits are ideal for installation right after any cabinet-style manifolds. They allow to perform a variety of tasks:

- Emergency supply tie-in point Pipeline venting
- Purge gas inlet
- Isolation of the main gas supply manifold for repair

• Gas Sampling

Connection assembly for pipeline pressure relief valve

Dimensions & Length

Short distances between the gas source and the points of use reduce the risk of contamination. This also applies to proper pipe dimension. Keep in mind that the vast majority of laboratory analytical instruments use very small amounts of gases.

Can You Clean The Interior Of A Pipe/Tube Once Installed?

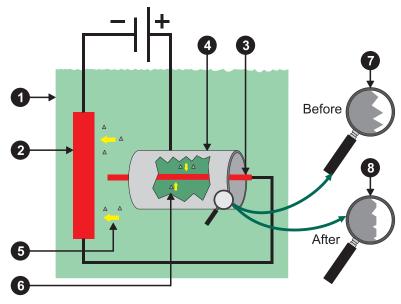
In 99% of the cases, the answer is NO. It is very difficult to clean piping when their diameters is either small, long and not designed for field cleaning in mind. Field cleaning in mind means regular drip valves, proper slopes and liquid traps avoided.

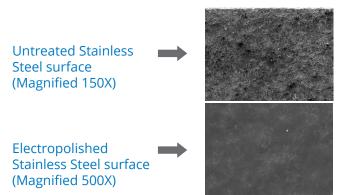
Tubing/Piping Electropolishing

Description

Surface metal is dissolved, removing all embedded contaminants, creating a smooth, mirror finish.

Applications

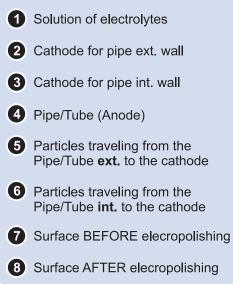

Used as gas distribution pipeline finish for the semi-conductor industry to prevent bacterial and impurity attachment to the inner conduit wall.


Cleanliness

Highest grade of passive surface available, can be subjected to long term exposure to aggressive molecules and caustic wash down.

Finish (Roughness Average = RA)

Depending on material, electropolishing can result in up to 50% increased smoothness measured in RA.



Images used by permission from Able Electropolishing, the copyright owner

ELECTROPOLISHING = REVERSE ELECTROPLATING

Surface particles are pulled off the surface when DC current is applied leaving a very smooth surface.

ELECTROPOLISHING PRINCIPLE

Why Packless Diaphragm Valves Are So Much Better?

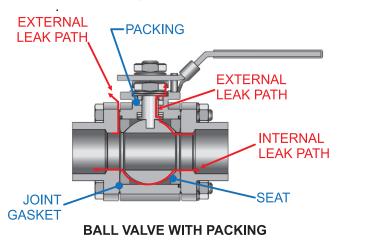
To Leak or Not to Leak - That is the question

Gas leaks in general - and particularly leaky valves have always been a great source of safety hazards, cost increment and gas purity decay.

Safety Hazards - Let's put it this way. Who would like to be exposed to toxic gases escaping from a leaky valve? Would you feel safe to install above a drop ceiling a potentially leaky valve in hydrogen service? Asking the questions is providing the answers at the same time.

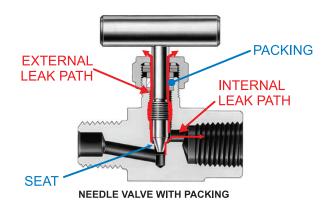
Cost Increment - Did you know that a large cylinder of Research Grade Helium is several hundreds of dollars? An Helium leak is not hazardous but it's certainly a costly situation.

Purity Decay - Contrary to popular belief, a pressurized pipeline can let ambient air (and related impurities) inside the gas stream. How? By three (3) simple phenomena:


- Venturi
- Rapid Decompression
- Diffusion

Ball Valves

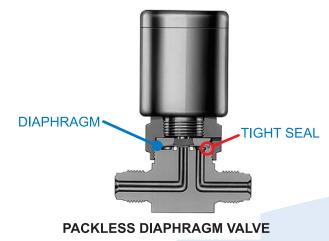
Ball valves (and particularly three-piece ball valves such as medical ball valves) are prone to leak. There are three (3) leak paths:


- Internal leak through the seat
- External leaks through the packing
- External leaks through the joint gasket

Although high quality instrumentation ball valves offer relatively good leak integrity when the valve is new. Wear and tear due to friction (high duty cycles) make this type of valve prone to critical leakage. Large variations in service pressure is a sure way to get the valve to leak internally.

Needle Valves

Needle valves provide both flow control and shut-off service. There are two (2) leak paths: one (1) internal and one (1) external. The external leak path follows the stem from the wetted internal portion up to packing nut. Leaks are particularly noticeable when the stem is rotating (ie opening or closing the valve) due to vibration and mechanical friction. The internal leak takes place where the stem sits on the valve body. This is particularly true when the stem tip is bare metal (metal-to-metal seal are prone to leak).



Packless Diaphragm Valves

Diaphragm valves are the best choice for high purity applications for three (3) main reasons:

There is no direct path between the handle mechanism and the wetted components (separated by the diaphragm);
There is no friction between the seats and the closing mechanism (diaphragm).

• Pressure has no impact on the leak integrity. Diaphragm valves are also specifically cleaned to handle high purity gases and prepared for aggressive molecules such as acids and oxidizers.

Carbon Dioxide & Regulator Freeze Up

Under certain conditions, users of carbon dioxide gas (from high pressure cylinders) experience "freeze up" problems on valves, regulators and other compressed gas equipment. The term "freeze up" refers to a pressure regulator becoming clogged with dry ice, snow or crystals which restrict the flow of gas through the regulator or other pressure control valve. The following explains this phenomenon in an effort to help users avoid problems in CO_2 distribution systems.

Why does a regulator freeze up?

When high pressure CO_2 gas expands through a regulator seat or other flow control orifice, it can be seen downstream of the orifice on the low pressure side of the regulator as a mixture of gas with solid (snow) or liquid CO_2 . If the downstream pressure is below 60 PSIG, the mixture is gas and snow, above 60 PSIG, the mixture is gas and liquid.

The amount of solid (snow) or liquid can vary from <1%, at inlet pressures under 800 PSIG when the cylinder is cool, to more than 20% under severe freeze up condition when the pressure is above 1100 PSIG resulting from a warm cylinder. Contrary to what one might expect, the most severe freeze-up conditions with CO₂ exists on warm days when a full cylinder is at 90F or higher and the cylinder pressure is at least 1100 PSIG. At normal room temperature, and full cylinder pressure of 700-900 PSIG, the problem exists, but not as severe as under the conditions above.

 CO_2 cannot form at pressures above 60 PSIG. It occurs when the gas undergoes the pressure drop at the regulator valve from inlet pressure to a delivery pressure below 60 PSIG, emerging as a mixture of gaseous and solid CO_2 at a temperature in the range of -70F at 60 PSIG to -100F at the lower pressures. Under the most severe freeze-up conditions, a significant percentage of the mixture can be solid, requiring about 200 watts of heat /100 scfh of CO_2 to vaporize the solid and raise to room temperature.

Why use a heated regulator?

Unheated regulators, operating at delivery pressures below 60 PSIG, are subject to classic freeze up with solid CO_2 . The CO_2 snow and dry ice particles may pass through a regulator of the outlet is wide open. If an orifice or flow control valve used, a filter is needed to prevent the solid CO_2 particles from clogging the orifice. This can result in a regulator of the outlet is wide open. This can result in the low pressure chamber of the regulator becoming completely filled with solid CO_2 . The severity of the problem depends upon the flowrate of CO_2 , the inlet conditions, the duty cycle (percentage of time that the gas is flowing) and the physical size of the regulator.

Unheated regulators, even if they avoid the classic problem of freeze up, cannot avoid the refrigerant effect of CO_2 . When the pressure drops at the regulator valve, the CO_2 temperature drops sharply to the levels stated above, and at normal flow rates, frost can cover the entire regulator and extend to the downstream system. This frost is a result of the moisture in the air freezing and accumulating on the exterior surface. It is not related to the CO_2 effects described here and typically have no effect on the performance of the valve.

The solution

Heated regulators can relieve or eliminate freeze-up problems. The BeaconMedaes CTS Series has 200 watts of heat to provide a continuous 100 scfh of CO_2 under the most severe freeze-up conditions and higher flow rates under normal (intermittent) conditions. The regulators are two-stage, to include the advantages of the two-stage regulators discussed above. The first stage cavity serves as a boiler to vaporize CO_2 liquid and eliminate or minimize any CO_2 solids in the second stage. The second stage is then available to heat the CO_2 vapor before it reaches the outlet.

Manifold Selection Questionnaire

Gas Service	
Molecule	That determines all kinds of things such as CGA fitting and materials.
Delivery Pressure	To cover all applications needs.
Maximum flow rate	Flows are generally unknown except when they are exceptionally high.
Normal flow rate	Most high purity applications are steady low flow.
Grade / Purity/ Level	For UHP applications, opt for small equipment like stations.
Gaseous or cryogenic liquid service	Self explanatory
Environment	
Indoor or outdoor installation?	Outdoor equipment requires NEMA 3R, 4, 4X alarms
Space allowed for this manifold?	This is a particularly important to configure the header bars
Is the area ventilated?	The use of a gas monitoring system might be required in confined spaces
Fire sprinkers in the room?	NFPA 55 regulates the quantity of molecules allowed in a given space
Is it a permanent installation?	For temporary installation, open-style manifolds might be better suited
Which country will it be installed?	Determines the cylinder connection (CGA, DIN, BS, or NEN).
Is environment explosive or corrosive?	It helps to determine the type of alarm or the coating of the equipment
Preferences	
How many cylinders are you planning?	Hint: Consider one cylinder bank replacement per week.
Preference for stainless steel over brass?	You may not have a choice if the gas is corrosive (SS in that case).
Flexible hoses or rigid pigtails?	Rigid pigtails rarely leak but they are extremely stiff. Go flexible!
Do you accept delivery pressure variations?	It tells us if you need single or two-stage pressure regulation
Is gas interruption acceptable?	Determines if an automatic switchover manifold is required
Manifold in an enclosure or not?	In North America, cabinet-style is popular. For Europe, not so much
Preferences	
Do you want to be warned when a bank is depleted?	In other words, is an alarm required with your manifold?
We recommend vent valves for UHP applications	Venting and purging help keep a clean system
Is equipment regularly attended or supervised?	For unattended equipment, go with a fully automatic switchover manifo

Enter your answers in the proper boxes above

Project Name	Location	Contact Name	Phone Number	Date

Calculations Number Of Cylinders Per Manifold

This section discusses how to properly size a gas manifold. What are the criteria to determine how many gas cylinders should a manifold have? The exercise below details step by step how to do just that.

It is important to work with the gas supplier and the end user. Too many gas cylinder deliveries may end up in high delivery cost for the gas supplier and an accounting nightmare for the end user. Conversely, long periods of time between gas cylinder deliveries may cause a manifold to run dry or require costly emergency deliveries for the gas supplier.

Example

Your customer, an important oil refinery, is giving you the task to determine how many gas cylinders each manifold should have for their new state-of-the-art quality control laboratory they are designing. Because vehicle traffic in gas refineries have to be kept to a minimum. You are asked to make sure there is no more than **one delivery of gas cylinders per week**. You also know that all analytical equipment in the current laboratory will be transferred to the new laboratory. To illustrate our example, we are using Helium.

Step 1 - Determine the gas consumption, purity, and pressure required for each analytical equipment.

The first step you take is visiting the current laboratory. During your visit, you use the questionnaire on **page 18** of this document to gather all gas consumption for each analytical equipment.

Step 2 - Compile the information you collected in Step 1.

This step is about listing each analytical equipment and their respective gas requirements. Obviously, the data shall be segregated by gas and then by other specific requirements such as pressure or purity. You came up with a Table (see page 19) that clearly shows the total requirements per gas and then by pressure. The goal is to come up with a total gas consumption for a specific period (in your case it is SCFH).

Total gas consumption per hour = **Z** Consumption per point of use per hour

The table on page 19 shows Helium to be at 3.189 SCFH

Step 3 - Duty Cycle

The duty cycle is defined as the percentage of a period in which the gas is required. In your case, because the refinery is running 24/7. The laboratory is also running 24/7.

Because the lab is operating 24/7. The duty cycle is 100% (24 hours per day)

Example of Duty Cycles expressed in days

- 8 hours per 24 hour day (33%)
- 10 min. per hour during 6 hours per 24 hour day (4%)
- 2 hours during per 24 hour day (4%)

Step 4 - Total gas usage between gas cylinder deliveries The end user already told you that only one gas cylinder delivery per week is acceptable. The interval between gas deliveries is 7 days.

Total gas = usage between gas deliveries	: Hourly usage	X	Duty x cycle	No. of days
535 SCF =	3.189 SCFH	X	24 hours per day	x 7 days

Step 5 - Determine the gas cylinder volume (size) to be used.

You contact the gas company and you understand that the refineries has standardized on K-size cylinders for all gases. You consult **page 7** of this manual and you see that a K-size cylinders contains **214 SCF of Helium**.

Step 6 - Determine how many cylinders are required between each gas cylinder deliveries

At this point, you easily determine the following equation:

No. of gas	Gas usage	Volume of
cylinders =	between 🚢	gas per
between deliveries	deliveries	cylinder

3(2.5) gas cylinders = 535 SCF between deliveries per 7 days - 214 SCF per cylinder

Step 7 - Determine how many cylinders are required for the gas manifold.

A manifold system shall always have one gas cylinder bank in use and one complete bank in reserve.

Therefore, in our example, the Helium manifold shall have two (2) banks of three (3) gas cylinders each.

Gas Cylinder Storage **Design Guidelines**

Temperature

• Cool temperature shall be maintained in the gas cylinder storage area.

· Gas cylinders shall not be exposed to temperature exceeding 125° F [52° C].

• Outdoor storage shall be **above grade**, dry and protected from the weather.

- Gas cylinders shall not be exposed to **direct sunlight**.
- Excessive heat, open flame or ignition are forbidden.

Safety

• Gas cylinders shall be **protected from tampering** by unauthorized personnel.

• Cylinders shall have their **caps when not in use**.

• Cylinders whether they are in use or in storage shall be **secured** with a chain or another type of fasteners.

• Highly toxic and toxic gas cylinders shall be used only in gas cabinets.

· Gas detection monitoring system shall protect personnel and the premises from gas hazards such as oxygen depletion and explosion.

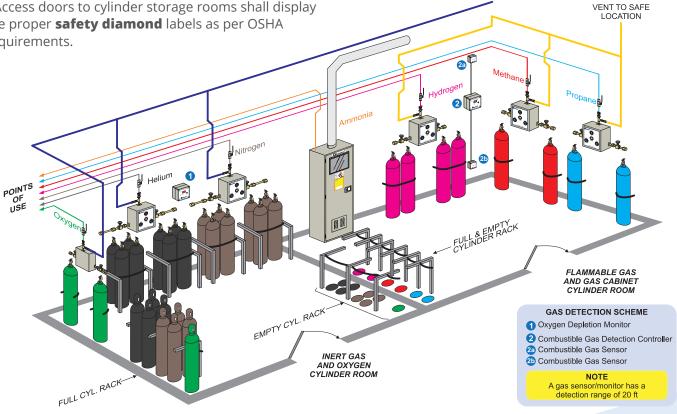
• Upon detection of gas leak, personnel shall be warned of the hazardous situation via visual and audible signals with proper signage.

• Access doors to cylinder storage rooms shall display the proper safety diamond labels as per OSHA requirements.

Storage Room/Area Design

- Ventilation is required.
- The gas cylinder storage room shall be **dry and well** lit.
- Combustible materials and debris shall be removed.
- The storage room walls shall have a fire resistance rating of **2 hours.**

• It is highly recommended to have a **sprinkler system** installed in cylinder rooms.


Room Layout

• Empty cylinders shall be segregated, stored **separately** and clearly identified as empty.

VENT TO SAFE

LOCATION

- Oxygen and other oxidizing gases shall be **separated**
- from flammable gas cylinders.
- Segregate gases by **type.**

Gas Cylinder Storage Maximum Allowable Quantity

Material	Class	High Hazard Protection Level				Use	- Closed Sy	stems	Use - Open Systems	
			Solid Pounds	Liquid Gallons	Gasª scf (lb)	Solid Pounds	Liquid Gallons	Gasª scf (lb)	Solid Pounds	Liquio Gallor
Cryogenic Fluid	Flammable Oxidizing Inert	2 3 NA	NA NA NA	4.5 ^{b,c} 4.5 ^{d,e} NL	NA NA NA	NA NA NA	4.5 ^{b,c} 4.5 ^{d,e} NL	NA NA NA	NA NA NA	4.5 ^b 4.5 ^d NL
Flammable, gas ^f	Gaseous Liquefied LP	2 2 2	NA NA NA	NA NA NA	1000 ^{d,e} (150) ^{d,e} (300) ^{g,h,i}	NA NA NA	NA NA NA	1000 ^{d,e} (150) ^{d,e} (300) ^g	NA NA NA	NA NA NA
Inert Gas	Gaseous Liquefied	NA NA	NA NA	NA NA	NL NL	NA NA	NA NA	NL NL	NA NA	NA NA
Oxidizing Gas	Gaseous Liquefied	3	NA NA	NA NA	1500 ^{d,e} (150) ^{d,e}	NA NA	NA NA	1500 ^{d,e} (150) ^{d,e}	NA NA	NA NA
Pyrophoric Gas	Gaseous Liquefied	2 2	NA NA	NA NA	50 ^{d,j} (4) ^{d,j}	NA NA	NA NA	50 ^{d,j} (4) ^{d,j}	NA NA	NA NA
Unstable (reactive) gas	Gaseous 4 or 3 detonable 3 non-detonable 2 1	1 2 3 NA	NA NA NA NA	NA NA NA NA	10 ^{d,j} 50 ^{d,e} 750 ^{d,e} NL	NA NA NA NA	NA NA NA	10 ^{d,j} 50 ^{d,e} 750 ^{d,e} NL	NA NA NA NA	NA NA NA NA
Unstable (reactive) gas	Liquefied 4 or 3 detonable 3 non-detonable 2 1	1 2 3 NA	NA NA NA NA	NA NA NA NA	(1) ^{d, j} (2) ^{d,e} (150) ^{d,e} NL	NA NA NA NA	NA NA NA NA	(1) ^{d, j} (2) ^{d,e} (150) ^{d,e} NL	NA NA NA NA	NA NA NA NA
Corrosive Gas	Gaseous Liquefied	4	NA NA	NA NA	810 ^{d,e} (150) ^{d,e}	NA NA	NA NA	810 ^{d,e} (150) ^{d,e}	NA NA	NA NA
Highly Toxic Gas	Gaseous Liquefied	4	NA NA	NA NA	20 ^{c,k} (4) ^{c,k}	NA NA	NA NA	20 ^{c,k} (4) ^{c,k}	NA NA	NA NA
Toxic Gas	Gaseous Liquefied	4	NA NA	NA NA	810 ^{d,e} (150) ^{d,e}	NA NA	NA NA	810 ^{d,e} (150) ^{d,e}	NA NA	NA NA
NA: Not appli	cable within the cont	text of NFPA 55 (refer	to the app	olicable build	ding or fire o	ode for ad	lditional info	rmation on t	hese mater	ials).
NL: Not limite	d in quantity.									
Notes:										
(1) For use of	control areas, see Se	ection 6.2 of NFPA 55.								
(2) Table valu	es in parentheses or	brackets correspond	to the uni	t name in pa	arentheses	or brackets	at the top o	f the columr	ı.	
	ate quantity in use an to exceed the limits i	id storage is not permi n the building code.	tted to exc	eed the quar	ntity listed fo	r storage. li	n addition, qu	iantities in sp	ecific occupa	ancies a
a Measured	at NTP [70°F (20°C) a	nd 14.7 psi (101.3 kPa	a)].							
u. measureu i			used in sec	rooms or in	approved ga	s cabinets o	or exhausted e	enclosures, as	specified in	this coo
	d in unsprinklered bui	ildings unless stored or	used in gas		approved ga					
b. None allowe		ildings unless stored or stationary or portabl						bod.		
b. None allowe c. With pressu d. Quantities a	re-relief devices for re permitted to be in for the material stor		e containe here store	rs vented di d or used in a	rectly outdo approved cal	ors or to a pinets, gas	in exhaust ho cabinets, exh	austed enclo	sures, gas ro l to be applie	oms, ed
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum o	ure-relief devices for re permitted to be in for the material stor /. guantities are permitt	stationary or portabl creased 100 percent w	e containe here stored also applies 0 percent i	rs vented di d or used in a s, the increas n buildings e	rectly outdo approved cal se for the qua equipped thr	ors or to a pinets, gas antities in b oughout w	in exhaust ho cabinets, exh both footnote rith an autom	austed enclo s is permitted atic sprinkle	d to be applie	ed
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum o accordance w f. Flammable	re-relief devices for re permitted to be in for the material stor /. quantities are permitt ith NFPA 13. Where F	stationary or portabl creased 100 percent w ed. Where Footnote e ted to be increased 10 ootnote d also applies s of mobile equipmen	e containe here stored also applies 0 percent i 5, the increa	rs vented di d or used in a s, the increas n buildings e ase for the q	rectly outdo approved cal se for the qua equipped thr uantities in l	oors or to a pinets, gas antities in b roughout w poth footno	in exhaust ho cabinets, exh both footnote rith an autom otes is permit	austed enclo s is permitted atic sprinkle tted to be ap	d to be applie r system in plied accum	ed ulativel
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum o accordance w f. Flammable in accordance	re-relief devices for re permitted to be in for the material stor /. uantities are permitt th NFPA 13. Where F gases in the fuel tank with the applicable f	stationary or portabl creased 100 percent w ed. Where Footnote e ted to be increased 10 ootnote d also applies s of mobile equipmen	e containe here stored also applies 0 percent i 5, the increa t or vehicle	rs vented di d or used in a s, the increas n buildings e ase for the q es are permit	rectly outdo approved cal se for the qu equipped thr uantities in l tted to excee	oors or to a binets, gas antities in b roughout w both footno ed the MAC	in exhaust ho cabinets, exh both footnote vith an autom otes is permit) where the e	austed enclo s is permitted atic sprinkle tted to be ap	d to be applie r system in plied accum	ed ulativel
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum of accordance w f. Flammable in accordance g. See NFPA 58	re-relief devices for re permitted to be in for the material stor /. quantities are permitt th NFPA 13. Where F gases in the fuel tank with the applicable f 8 for requirements for	stationary or portabl creased 100 percent w ed. Where Footnote e ted to be increased 10 ootnote d also applies s of mobile equipmen ire code.	e containe here stored also applies 0 percent i 5, the increa t or vehicle 3, as (LP-Gas)	rs vented di d or used in a s, the increas n buildings e ase for the q es are permit). LP-Gas is n	rectly outdo approved cal se for the qua equipped thr uantities in l tted to excee ot within the	oors or to a binets, gas antities in b roughout w both footno ed the MAC	in exhaust ho cabinets, exh both footnote vith an autom otes is permit) where the e	austed enclo s is permitted atic sprinkle tted to be ap	d to be applie r system in plied accum	ed ulativel
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum of accordance w f. Flammable in accordance g. See NFPA 58 h. Additional s	re-relief devices for re permitted to be in e for the material stor /. uuantities are permitt th NFPA 13. Where F gases in the fuel tank with the applicable f 8 for requirements for torage locations are r	stationary or portabl creased 100 percent w ed. Where Footnote e red to be increased 10 ootnote d also applies s of mobile equipmen ire code. r liquefied petroleum g	e containe here store also applies 0 percent i , the increa t or vehicle gas (LP-Gas) ed by a min	rs vented di d or used in a s, the increas n buildings e ase for the q es are permit). LP-Gas is n imum of 300	rectly outdo approved cal equipped thr uantities in l tted to excee ot within the 0 ft (92 m).	ors or to a pinets, gas antities in b roughout w poth footno ed the MAC	in exhaust ho cabinets, exh joth footnote rith an autom otes is permit) where the e IFPA 55.	austed enclo s is permitted natic sprinkle tted to be ap quipment is	d to be applied	ed ulativel
b. None allowe c. With pressu d. Quantities a as appropriate accumulatively e. Maximum of accordance w f. Flammable in accordance g. See NFPA 58 h. Additional s i. In mercanti	ire-relief devices for re permitted to be in- e for the material stor /. uantities are permitt ith NFPA 13. Where F gases in the fuel tank with the applicable f 8 for requirements for torage locations are r e occupancies, stora	stationary or portabl creased 100 percent w ed. Where Footnote e ted to be increased 10 ootnote d also applies s of mobile equipmen ire code. r liquefied petroleum g required to be separate	e containe here stored also applies 0 percent i s, the increa t or vehicle gas (LP-Gas) ed by a min d to a max	rs vented di d or used in a s, the increas n buildings e ase for the q es are permit). LP-Gas is n imum of 300 imum of 20	rectly outdo approved cal se for the qua- equipped thr uantities in l tted to excee ot within the 0 ft (92 m). 0 lb (91 kg) i	ors or to a pinets, gas antities in b roughout w poth footno ed the MAQ e scope of N n nominal	in exhaust ho cabinets, exh poth footnote ith an autom otes is permit) where the e IFPA 55.	austed enclo s is permitted latic sprinkle tted to be ap quipment is) LP-Gas con	d to be applied	ed ulatively

Gas Monitoring 101

Outside of air, all gases are dangerous to various degrees. Some gases will explode, some gases are very toxic and some gases are both. For the later case, we want to detect those molecules at their toxicity levels as they are all toxic way before they can burn.

Designing gas monitoring systems is not a complicated task when you know the basic principles This page covers the most important topics that will lead to a safe and performing gas monitoring system.

How Do We Determine Alarm Levels? Toxic Gases - 1st Alarm Level **Threshold Limit Value**

Time Weighted Average (TLV-TWA)

Refers to the time-weighted average concentration for a normal 8- hour workday and a 40 hour workweek to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.

Toxic Gases - 2nd Alarm Level

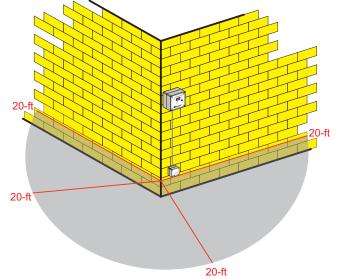
Threshold Limit Value

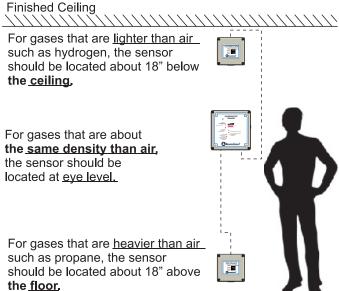
Short Term Exposure Limit (TLV-STEL)

TLV-STEL is the maximum concentration of a substance for (a) a continuous 15- minute exposure period, (b) for a maximum of 4 such periods per day, with at least a 60- minute exposure-free period between two exposure periods, and (c) provided the daily TLV-TWA is met.

Flammable Gases - 1st Alarm Level

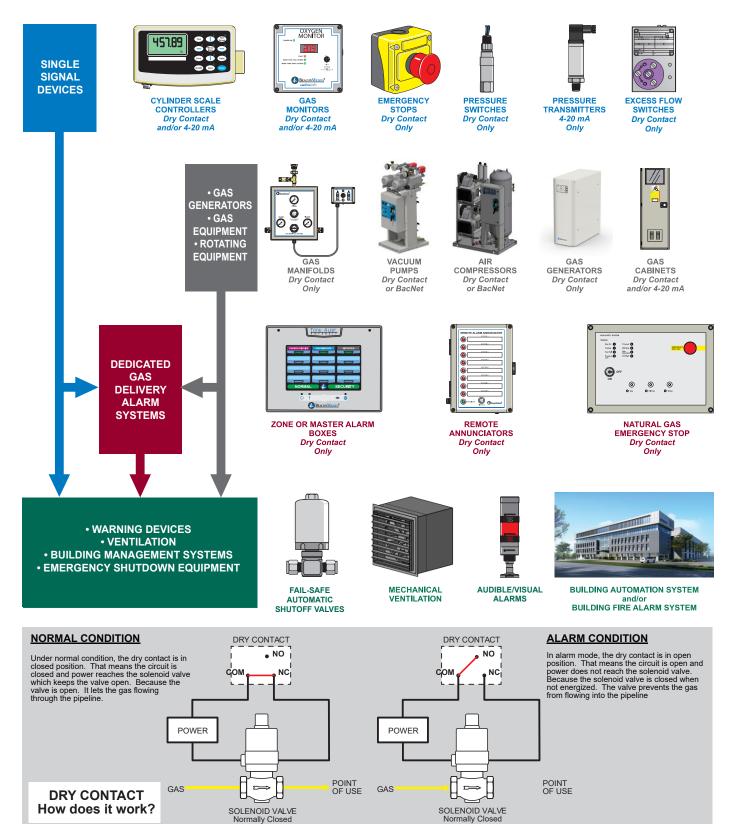
Lower Explosive Limit (25% LEL)


Flammable Gases - 2nd Alarm Level


Lower Explosive Limit (50% LEL) **Lower Explosive Limit**

The minimum concentration of a particular combustible gas or vapor necessary to support its combustion in normal ambient air. Below this level, the mixture is too lean to burn.

Detection Ranges & Alarm Levels



_____ **Finished Floor**

Common Gases	Hazards	Full Scale Range	First Alarm Level	Second Alarm Level	Sensor Location
Ammonia	Toxic	0-100 ppm	25 ppm (TLV-TWA)	35 ppm (TLV-STEL)	Ceiling or eye level
Carbon Dioxide	Toxic	0-50,000 ppm	5,000 ppm (TLV-TWA)	30,000 ppm (TLV-STEL)	Floor or eye level
Carbon Monoxide	Toxic	0-500 ppm	25 ppm (TLV-TWA)	35 ppm (TLV-STEL)	Eye level
Chlorine	Toxic	0-10 ppm	0.5 ppm (TLV-TWA)	1 ppm (TLV-STEL)	Floor
Hydrogen	Flammable	0-100 % LEL	1 % in AIR (25% LEL)	2 % in AIR (50% LEL)	Ceiling
Hydrogen Sulfide	Toxic	0-50 ppm	10 ppm (TLV-TWA)	15 ppm (TLV-STEL)	Floor
Methane	Flammable	0-100 % LEL	1.25 % in AIR (25% LEL)	2.5 % in AIR (50% LEL)	Ceiling
Nitrogen Dioxide	Toxic	0-10 ppm	3 ppm (TLV-TWA)	5 ppm (TLV-STEL)	0-10 ppm
Oxygen (Low & High Mode)	Oxidizer	0-25 % in AIR	19.5 % (low level)	23.5 % (high level)	Eye level
Oxygen (Depletion Mode)	Oxidizer	0-25 % in AIR	19.5 % (low level)	18 % (very low level)	Eye level
Propane	Flammable	0-100 % LEL	0.5 % in AIR (25% LEL)	1 % in AIR (50% LEL)	Floor

Control Scheme, Remote Actuation & Annunciation

Pressure Rating For Tubing & Piping

<u>Formula</u>:

$$tm = \frac{P * Do}{2 (SE + P * y)} * A$$

Where:

- tm = Minimum wall thickness
- *P* = *Design* pressure
- *Do* = *Outlet diameter of tube or pipe*
- SE = Allowable stress
- y = Temperature coefficient
- A = Threading allowance and/or Derating Value

Stress Value for Common Tubes and Pipes

Material		SE
Copper pipe or tube	ASTM B280	5,000
Copper pipe or tube	ASTM B75	6,000
Brass	ASTM B16	13,000
Aluminum 6061-T6	ASTM B210	14,000
Steel	ASTM A179	15,700
Monel alloy 400	ASTM B175	18,700
Stainless steel 304/316	ASTM A269	20,000

As listed in ASME B31.3

Above are stress values as published in ASME B31.3 for temperature between -20 $^\circ$ F to 100 $^\circ$ F.

For welded tubing, a derating factor must be applied for weld integrity:

- for double-welded tubing, multiply pressure rating by 0.85
- for single-welded tubing, multiply pressure rating by 0.80

The SE values must be derated to comply to ASME B31.1. The derating factors are different for each material.

Example:

A material testing laboratory wants to use an existing pipeline to test concrete compression resistance. You are requested to verify if the existing pipeline is adequate for the application. Below is the data you have been able to collect:

Conduit type:	Single-Welde	ed Tube
Material:	Stainless ste	el 304 (welded)
Outside diameter:	0.500"	Do = 0.500
Specification:	ASTM A269	SE = 20000
Operating temperature:	70°F	y = 0.4*
Operating pressure:	3500 psig	P = 3500
Type of fittings:	Compressior	n A = 0
Actual wall thickness:	0.035″	
Derating factor:	Single A = 0	

tm =
$$\left[\frac{3500 \times 0.500}{2 (20000 + 3500 \times 0.4)}\right] \times 0.8$$

$$tm = \begin{bmatrix} 1750 \\ 42800 \end{bmatrix} \times 0.8$$

tm = _____ 0.041

tm = 0.032

Existing wall thickness = 0.035"

0.032" < 0.035"

Conclusion, the existing tubing is adequate for the application.

0.8

Pressure Rating Copper Pipes & Tubes

O.D.	NOMINAL	WALL	I.D	MAX. PRESSURE (IN PSIG) at 150°F
0,375" (3/8")	1/4"	0,035''	0,305"	913
0,500" (1/2")	3/8"	0,049''	0,402"	960
0,625" (5/8")	1/2"	0,049''	0,527''	758
0,750'' (3/4'')	5/8"	0,049''	0,652''	626
0,875" (7/8")	3/4"	0,065''	0,745''	724
1,125" (1-1/8")	1"	0,065''	0,995''	557
1,375" (1-3/8")	1-1/4''	0,065''	1,245"	452
1,625" (1-5/8")	1-1/2"	0,072''	1,481"	420
2,125" (2-1/8")	2"	0,083''	1,959''	370
2,625" (2-5/8")	2-1/2"	0,095''	2,435''	338
3,125" (3-1/8")	3"	0,109''	2,907''	328
3,625" (3-5/8")	3-1/2"	0,120''	3,385''	311
4,125" (4-1/8")	4''	0,134	3,857''	306

Pipe - Copper - ASTM B280 - Type K

O.D.	NOMINAL	WALL	I.D	MAX. PRESSURE (IN PSIG) at 150°F
0,125" (1/8")	1/8"	0,030''	0,065''	2613
0,250" (1/4")	1/4"	0,030''	0,190''	1195
0,375" (3/8")	3/8"	0,032''	0,311"	836
0,500" (1/2")	1/2"	0,032''	0,436''	618
0,625" (5/8")	5/8''	0,035''	0,555''	525
0,750'' (3/4'')	3/4"	0,035''	0,680''	435
0,875" (7/8")	7/8''	0,045''	0,785''	495
1,125" (1-1/8")	1-1/8''	0,050''	1,025''	420
1,375" (1-3/8")	1-3/8''	0,050''	1,275''	373
1,625" (1-5/8")	1-5/8''	0,060''	1,505"	347

Technical Data

Values of allowable internal working pressure for copper tubes in service are based on the formula from ANSI B31, Standard Code for Pressure Piping:

$P = \underline{2St}_{m}$	Р	=	Allowable pressure	@ 150°F S = 5100 PSIG annealed
D - 0.8 t _m	S	=	Allowable stress	@ 200°F S = 4800 PSIG annealed
	t _m	=	Wall thickness	@ 300°F S = 4700 PSIG annealed
	Od	=	Outside diameter	@ 400°F S = 3000 PSIG annealed

All ratings listed for types K, L, M, DWV and refrigeration service tube in the preceding charts are calculated for tube in the annealed condition. These values should be used when soldering, brazing or welding is employed for joining components in a system. While the ratings for a hard drawn tube are substantially higher, they should only be used for systems using properly designed flare or compression mechanical joints, since joining by any heating process might anneal (soften) the tube. In designing a system, careful consideration should also be given to joint ratings as well as those of the components.

O.D.	NOMINAL	WALL	I.D	MAX. PRESSURE (IN PSIG) at 150°F
0,375" (3/8")	1/4"	0,030''	0,315"	775
0,500'' (1/2'')	3/8"	0,035''	0,430''	662
0,625'' (5/8'')	1/2"	0,040''	0,545"	613
0,750'' (3/4'')	5/8''	0,042''	0,666''	537
0,875'' (7/8'')	3/4"	0,045''	0,785''	495
1,125" (1-1/8")	1"	0,050''	1,025"	420
1,375'' (1-3/8'')	1-1/4''	0,055''	1,265"	373
1,625'' (1-5/8'')	1-1/2"	0,060''	1,505"	347
2,125'' (2-1/8'')	2"	0,070''	1,985''	309
2,625'' (2-5/8'')	2-1/2"	0,080''	2,465''	285
3,125" (3-1/8")	3"	0,090''	2,945''	270
3,625'' (3-5/8'')	3-1/2"	0,100''	3,425''	258
4,125'' (4-1/8'')	4'	0,110''	3,905''	249

Pipe - Copper - ASTM B280 - Type L & ACR

Pressure Rating

Stainless Steel Tubes

	PRESSURE (IN PSIG)												
	WALL THICKNESS												
O.D. IN INCH	.020"	.025"	.028"	.035"	.049"	.065"	.083"	.095"	.109"	.120"	.156"	.188"	.250"
1/8	6000	7500	9750	10500	14500								
3/16	4000	4988	5601	5600	9801	14700							
1/4	3000	3750	4200	5250	7350	9750	14250	14250					
5/16	2400	3000	3360	5800	7800	7800	9945	11438					
3/8	2000	2500	3000	3501	4900	6501	8301	9501	10900	12000			
1/2	1500	1875	2100	2625	3675	4875	6225	7125	8175	9000			
5/8	1200	1500	1680	2100	2940	3900	4980	5722	6540	7200	9360	112200	
3/4	1000	1251	1401	1750	2451	3250	4150	4750	5451	6000	7800	9351	
7/8	857	1071	1200	1500	2100	2786	3557	4071	4671	5143	6686	8014	
1	750	938	1050	1313	1838	2438	3113	3563	4088	4500	5850	7013	9375
1 1/8	666	833	934	1167	1633	2168	2768	3167	3634	4000	5200	6233	8333
1 1/4	600	750	840	1050	1470	1950	2490	2850	3270	3600	4680	5610	7500

What is the difference between a tube and a pipe **Stainless Steel TUBE**

Stainless Steel TUBE								
Are tubes threadable?	Are tubes weldable?	Are tubes swageable?	Are tubes bendable?					
No The wall of any tube, no matter the wall thickness may be, it is not thick enough to allow threads. Furthermore, there are no corresponding female fittings available on the market.	<text><text></text></text>	Yes We are refering to high precision compression fittings popularized by swagelok and similar brands.	Yes In fact, for high purity piping systems, it is preferable to minimize the amount of fittings in a piping network. Bending tubes instead or using compression elbows is the best way to minimize fittings.					
	Are tubes threadable? NO The wall of any tube, no matter the wall thickness may be, it is not thick enough to allow threads. Furthermore, there are no corresponding female fittings available on the	Are tubes threadable?Are tubes weldable?NoYesThe wall of any tube, no matter the wall thickness may be, it is not thick enough to allow threads.YesFurthermore, there are no corresponding female fittings available on theThe most popular welding technique used to robital welding technique.	Are tubes threadable?Are tubes weldable?Are tubes swageable?NoYesYesThe wall of any tube, no matter the wall thickness may be, it is not thick enough to allow threads.The most popular welding technique used to allow threads.We are referring to high precision compression fittings technique.Furthermore, there are no corresponding female fittings available on theThe most popular welding technique.We are referring to high precision compression fittings popularized by Swagelok and similar brands.					

Pressure Rating

Stainless Steel Pipes

	PRESSURE IN PSIG - LOWER FIGURES ARE WALL THICKNESS										
	SCHEDULE										
NOMINAL PIPE SIZE	O.D. IN INCH	5′s	10's	10	20	40	STD 40's	80's	E.H. 80's	160	DBLE E.H.
1/8	.405		4537 .049	4537 .049		6296 .068	6296 .068	8796 .095	8796 .095		
1/4	.540		4514 .065	4514 .065		6111 .088	6111 .088	8264 .119	8264 .119		
3/8	.675		3611 .065	3611 .065		5056 .091	5056 .091	7000 .126	7000 .126		
1/2	.840	2902 .065	3705 .083	3705 .083		4866 .109	4866 .109	6563 .147	6563 .147	8348 .187	13125 .294
3/4	1.050	2322 .065	3108 .083	3108 .083		4036 .113	4036 .113	5500 .154	5500 .154	7786 .218	11000 .308
1	1.315	1854 .065	3108 .109	3108 .109		3793 .133	3793 .133	5105 .179	5105 .179	7219 .250	10209 .358
1 1/4	1.660	1468 .065	2462 .109	2462 .109		3163 .140	3163 .140	4315 .191	4315 .191	5648 .250	8630 .382
1 1/2	1.900	1283 .065	2151 .109	2151 .109		2862 .145	2862 .145	3947 .200	3947 .200	5546 .281	7895 .400
2	2.375	4105 .065	1721 .109	1721 .109		2432 .154	2432 .154	3442 .218	3442 .218	5416 .343	6814 .436

What is the difference between a tube and a pipe Stainless Steel PIPE

Why the name?	Are pipes threadable?	Are pipes weldable?	Are pipes swageable?	Are pipes bendable?
Piping dimensions are nominal and not actual. The name is not related to the internal diameter. A 1/2" pipe is actually 0.840" outside diameter. The wall thickness are	Yes You can make threads to a pipe as long as the wall thickness is Schedule 40 or bigger.	Yes Piping can be welded using multiple welding techniques and pipe fittings.	No We are referring to high precision compression fittings popularized by Swagelok and similar brands.	No For the purpose of erecting laboratory piping, change of direction is primarily made by using code-compliant manufactured pipe elbows.
determined by the schedule no. as shown in the table above.				A second se

Calculations Flow Capacity For Tubing

Undersized Lines

An undersized line will result in high pressure drops, making it difficult or impossible to consistently supply the required gas pressure and to the instrument.

Oversized Lines

An oversized line, by contrast, will ensure adequate pressure but will be unnecessarily expensive to purchase and install.

Accurate Flow Calculations

Accurate flow calculation is an art as it has several parameters to consider:

- a) Mechanical: Tees, pipes, elbows
- b) Fluid: Molecular weight, viscosity, compressibility
- c) Operating conditions: Temperature, pressure

Most accurate flow calculations are conveniently made by computers.

Flow Chart

The table on the following page provides a good estimate of potential flow through a given tube diameter.

Both inlet pressure and length of the pipeline have an impact on outlet flow of air.

Gas and Temperature Compensation

The type of gas molecule could greatly affect the flow: the heavier the molecules are, the slower they move in a pipe.

The temperature also plays an important role in the output flow: the warmer the molecules are, the faster they move in a pipe.

Specific Gravity Of Common Gases					
Gas	Specific Gravity				
Air	1.00				
Argon	1.38				
Carbon Dioxide	1.52				
Carbon Monoxide	0.97				
Helium	0.14				
Hydrogen	0.07				
Nitrogen	0.97				
Oxygen	1.11				

Formula:

Correction Factor for Gases Other than Air (Cg)

Formula:

Correction Factor for Temperatures other than 60 $^\circ {\rm F}$

$$Ct_{F} = \frac{\left[460 + T\right]}{520}$$

Formula:

Correction Factor for Temperatures other than 16 $^\circ\mathrm{C}$

$$Ct_{c} = \frac{[273.15 + T]}{288.71}$$

Example

Calculate distribution line size for carbon dioxide of 2000 SCFH at inlet pressure of 150 PSIG and a maximum pressure drop of 5 PSIG per 100 feet at 80°F

Specific Gravity of Carbon Dioxide:..... 1.52

$$Cg = \left[\sqrt{\frac{1}{g}}\right] = \left[\sqrt{\frac{1}{1.52}}\right] = 0.811$$

$$\frac{2000 \text{ SCFH CO}_2}{0.811} = 2466 \text{ SCFH of Air at } 60^{\circ}\text{F}$$

$$Ct_{F} = \frac{\lfloor 460 + T \rfloor}{520} = \frac{\lfloor 460 + 80 \rfloor}{520} = 1.038$$

Flow Capacity For Tubing

1/2 " (4) 760	3/4″	1″
	3/4"	1″
760		
1,700 2,410	1,610 3,600 5,100	3,040 6,800 9,720
1,020	2,160	4,070
2,280	4,820	9,100
3,240	6,820	12,970
1,220 2,730 3 ,880	2,580 5,775 8,170	4,870 10,900 15,540
3,120	6,590	12,450
4,430	9,330	17,750
3,780	7,980	15,070
5,370	11,300	21,480
4,340	9,160	17,300
6,160	12,970	24,660
4,940	10,440	19,700
7,020	14,770	28,100
7,270	15,360	29,000
10,330	21,740	41,300
8,470	17,900	33,800
12,040	25,350	48,200
9,770	20,650	39,000
13,890	29,200	55,600
10,920	23,100 (10,890)	43,550 (20,531)
15,510	32,650 (15,392)	62,100 (29,276)
	1,700 2,410 1,020 2,280 3,240 1,220 2,730 3,880 3,120 4,430 3,780 5,370 4,340 6,160 4,940 7,020 7,270 10,330 8,470 12,040 9,770 13,890 10,920	1,7003,6002,4105,1001,0202,1602,2804,8203,2406,8201,2202,5802,73033,1206,5904,4309,3303,7807,9805,37011,3004,3409,1606,16012,9704,94010,4407,02014,7707,27015,36010,33021,7408,47017,90012,04025,3509,77020,65013,89029,20010,92023,100 (10,890)

Flow of Air at 60°F in SCFH

Example from previous page

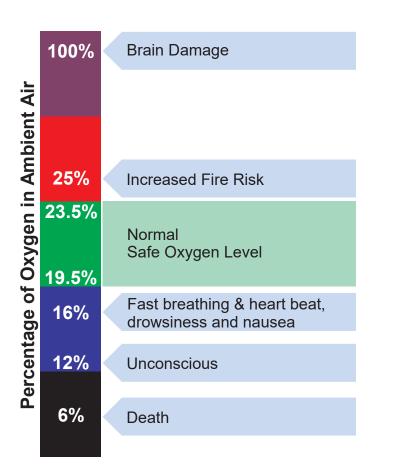
2

150 psi is the pipeline pressure.

5 psi is the maximum pressure drop allowed in the pipeline.

ß

The correction factor for 2000 SCFH of carbon dioxide in equivalent air is 2466 SCFH. In the table above, the value slightly above it is 2,730 SCFH.



2,730 SCFH at 150 psi working pressure and 5 psi every 100 ft is 1/2" tube.

Assessment Of Ventilation Requirements For Oxygen Depletion

Introduction

It is well known, humans require oxygen to live. OSHA and other safety regulatory bodies consider that the minimum amount of oxygen in air without suffering **adverse is effects 19.5%**

Composition of Air

Normal Constituants Nitrogen Oxygen Argon Carbon Dioxide Neon Helium Krypton Hydrogen Xenon Impurities Water	78.084% +/- 0.004 20.946% +/- 0.002 0.934% +/- 0.001 350 ppm 18.21 ppm 5.239 ppm 1.14 ppm 0,5 ppm 0.087 ppm
Impurities	1,000 to 28,000 ppm
Water	1 to 3 ppm
Methane	0.5 ppm
Nitrous Oxide	0.06 to 1 ppm
Carbon Monoxide	0.01 to 0.1 ppm
Ozone	0.01 to 0.1 ppm
Ethane	0 to 2 ppm
Ethylene	0 to 0.1 ppm
Propane	0 to 0.1 ppm
Acetylene	0 to 0.1 ppm
Butanes	0 to 0.2 ppm
Pentanes	0 to 0.2 ppm
Nitrogen Dioxide	0 to 0.08 ppm
Radon	6 x 10 ⁻¹⁸
Nitric Oxide	Traces

Oxygen Depletion

The table beside shows the composition of ambient air. Any changes in the concentration of the gases listed in this table may have a significant impact on the concentration of oxygen in air.

One of the common gases found in laboratories that may have a major impact on the concentration of oxygen is liquid nitrogen. Should a sudden release of liquid nitrogen (and consequently nitrogen gas) occur. There is a risk of asphyxiation where ventilation is inadequate as the nitrogen can build up and displace oxygen.

Ratio

Assessment Of Ventilation Requirements For Oxygen Depletion

Formula		
[O₂] Where:	=	$\frac{0.2095 (V_r - V)_g}{V_r} X 100$
[O ₂]	=	Resulting concentration of oxygen in the room after a release of gas
V _r	=	Volume of the room ⁽¹⁾
V _g	=	Volume of gas released in the room in gas (vapor) phase ^{(1) (2)}
0.2095	=	Normal oxygen concentration in the air

Notes

⁽¹⁾ When calculating, you have to use the same unit of measurements for both V_r and V_g. In other words, if your calculations are in metric unit, V_r and V_g shall be both in metric (either m³ or liters $_{gas}$).

⁽²⁾ If you make this calculation for a release of liquid nitrogen. You have to use V_g in gas phase although the release could be in liquid phase. Every cryogenic liquid released in the atmosphere will convert into gas at different ratios.

Thermal Expansion Ratio of Cryogens

Molecule	Expansion
Liquid Nitrogen	1:696
Liquid Oxygen	1:860
Liquid Argon	1:841

What does that mean?

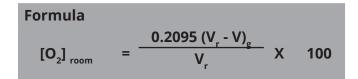
Liquid Nitrogen

It takes 696 cu. ft. of gaseous nitrogen to make 1 cu. ft. of liquid nitrogen

Liquid Oxygen

It takes 860 cu. ft. of gaseous oxygen to make 1 cu. ft. of liquid of liquid oxygen

Liquid Argon


It takes 841 cu. ft. of gaseous argon to make 1 cu. ft. of liquid argon

Assessment Of Ventilation Requirements For Oxygen Depletion

Imperial Metric

A pressurized liquid nitrogen cylinder containing 43.6 gallons of liquid nitrogen suddenly loses its vacuum. The pressure of the liquid container suddenly rises and the pressure relief valve releases all nitrogen in the room.

The room dimensions are the following: Width: 16.4 feet Length: 32.8 feet Height: 9.8 feet

<u>Where</u>

 V_g : Volume of gas released V_r^{r} : Volume of the room O_2 : Level of oxygen

Determination of V_a

$$V_{g} = 43.6 \text{ gallons}_{liq} \times 696$$

$$V_{g} = 30,345 \text{ gallons}_{gas}$$

$$V_{g} = 30,345 \text{ gallons}_{gas} \times 0.133 \text{ cu. ft.}_{1 \text{ gallon}}$$

Determination of V_r

$$V_r$$
 = 16.4 ft x 32.8 ft x 9.8 ft

Determination of
$$[O_2]_{room}$$

 $[O_2]_{room} = \frac{02.095 (5,275 - 4,054)}{5,272} X 100$

 $[O_2]_{room} = 258 \qquad X \ 100 = 4.9\%$ 5,272

<u>Conclusion</u>

A rapid release of liquid nitrogen would deplete the oxygen level in the room at around 4.9% which is a threatening level to human life.

Example Metric

A pressurized liquid nitrogen cylinder containing 165 liters of liquid nitrogen suddenly loses its vacuum. The pressure of the liquid container suddenly rises and the pressure relief valve releases all nitrogen in the room.

The room dimensions are the following: Width: 5 metres Length: 10 meters Height: 3 meters

Formula $[O_2]_{room} = \frac{0.2095 (V_r - V)_g}{V_r} X 100$

Where

V_g: Volume of gas released V_r: Volume of the room O₂: Level of oxygen

Determination of V_{g}

 V_g = 165 liters _{liq} X

X 696

$$V_{g}$$
 = 114,840 $_{gas}$

Determination of V_r

 $V_r = 5 \text{ m x } 10 \text{ m x } 3 \text{ m}$ X <u>1000 liters</u> 1 m³

$$V_r = \frac{150 \text{ m}^3 \text{ x } 1000 \text{ liters}}{1 \text{ m}^3} = 150,000 \text{ liters}$$

Determination of
$$[O_2]_{room}$$

 $[O_2]_{room} = \underline{02.095(150,000-114,840)}_{150,000}$ X 100

$$[O_2]_{room} = 258 X 100 = 4.9\%$$

Conclusion

A rapid release of liquid nitrogen would deplete the oxygen level in the room at around 4.9% which is a threatening level to human life.

The information contained in this document is offered ONLY as a guideline for the design of high purity gas delivery systems.

System designers and end users are cautioned to review the information found in this document and carefully determine the applicability of such information.

All statements, technical information and recommendations contained in this design guideline manual are based on tests and data which BeaconMedaes believes to be reliable. The accuracy, completeness, and applicability of such information is not guaranteed and no warranty of any kind is made or implied with respect thereto.

NOTES

BeaconMedaes -The Pipeliner

BeaconMedaes -The Pipeliner

BeaconMedaes • Part of the Atlas Copco Group Edition 2 © December 2018 www.beaconmedaes.com

veruslab

1